Suppr超能文献

流域尺度水文模型中关键源区预测的不确定性。

Uncertainty in critical source area predictions from watershed-scale hydrologic models.

机构信息

Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH, USA.

Department of Food, Agricultural and Biological Engineering, The Ohio State University, Columbus, OH, USA; The Ohio State University Translational Data Analytics Institute, Columbus, OH, USA.

出版信息

J Environ Manage. 2021 Feb 1;279:111506. doi: 10.1016/j.jenvman.2020.111506. Epub 2020 Nov 7.

Abstract

Watershed-scale hydrologic models are frequently used to inform conservation and restoration efforts by identifying critical source areas (CSAs; alternatively 'hotspots'), defined as areas that export relatively greater quantities of nutrients and sediment. The CSAs can then be prioritized or 'targeted' for conservation and restoration to ensure efficient use of limited resources. However, CSA simulations from watershed-scale hydrologic models may be uncertain and it is critical that the extent and implications of this uncertainty be conveyed to stakeholders and decision makers. We used an ensemble of four independently developed Soil and Water Assessment Tool (SWAT) models and a SPAtially Referenced Regression On Watershed attributes (SPARROW) model to simulate CSA locations for flow, phosphorus, nitrogen, and sediment within the ~17,000-km Maumee River watershed at the HUC-12 scale. We then assessed uncertainty in CSA simulations determined as the variation in CSA locations across the models. Our application of an ensemble of models - differing with respect to inputs, structure, and parameterization - facilitated an improved accounting of CSA prediction uncertainty. We found that the models agreed on the location of a subset of CSAs, and that these locations may be targeted with relative confidence. However, models more often disagreed on CSA locations. On average, only 16%-46% of HUC-12 subwatersheds simulated as a CSA by one model were also simulated as a CSA by a different model. Our work shows that simulated CSA locations are highly uncertain and may vary substantially across models. Hence, while models may be useful in informing conservation and restoration planning, their application to identify CSA locations would benefit from comprehensive uncertainty analyses to avoid inefficient use of limited resources.

摘要

流域尺度水文模型常用于通过识别关键源区(CSAs;也称为“热点”)来为保护和恢复工作提供信息,关键源区被定义为输出相对更多养分和沉积物的区域。然后,可以对 CSAs 进行优先级排序或“靶向”保护和恢复,以确保有限资源的有效利用。然而,流域尺度水文模型的 CSA 模拟可能存在不确定性,重要的是要向利益相关者和决策者传达这种不确定性的程度和影响。我们使用了四个独立开发的土壤和水评估工具(SWAT)模型和一个基于流域属性的空间回归(SPARROW)模型的集合来模拟 Maumee 河流域的 CSA 位置,该流域位于 HUC-12 尺度,流域面积约为 17000km²,用于模拟水流、磷、氮和沉积物的 CSA 位置。然后,我们评估了 CSA 模拟中的不确定性,这是通过模型之间 CSA 位置的变化来确定的。我们应用模型集合的方法——在输入、结构和参数化方面存在差异——有助于更好地解释 CSA 预测的不确定性。我们发现,模型在 CSA 的位置上存在一致性,这些位置可以有相对的信心进行目标定位。然而,模型在 CSA 的位置上更经常存在分歧。平均而言,一个模型模拟为 CSA 的 HUC-12 子流域中,只有 16%-46%的子流域也被另一个模型模拟为 CSA。我们的工作表明,模拟的 CSA 位置具有高度不确定性,并且在模型之间可能会有很大差异。因此,虽然模型在为保护和恢复规划提供信息方面可能有用,但在应用于识别 CSA 位置时,需要进行全面的不确定性分析,以避免有限资源的低效利用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验