Istituto di Scienze Applicate e Sistemi Intelligenti, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy.
Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, Napoli, 80131, Italy.
ACS Nano. 2020 Nov 24;14(11):15417-15427. doi: 10.1021/acsnano.0c06050. Epub 2020 Nov 10.
Herein, we demonstrate a cavity-enhanced hyperspectral refractometric imaging using an all-dielectric photonic crystal slab (PhCS). Our approach takes advantage of the synergy between two mechanisms, surface-enhanced fluorescence (SEF) and refractometric sensing, both based on high- resonances in proximity of bound states in the continuum (BICs). The enhanced local optical field of the first resonance amplifies of 2 orders of magnitude the SEF emission of a probe dye. Simultaneously, hyperspectral refractometric sensing, based on Fano interference between second mode and fluorescence emission, is used for mapping the spatially variant refractive index produced by the specimen on the PhCS. The spectral matching between first resonance and input laser is modulated by the specimen local refractive index, and thanks to the calibrated dependence with the spectral shift of the Fano resonance, the cavity tuning is used to achieve an enhanced correlative refractometric map with a resolution of 10 RIU within femtoliter-scale sampling volumes. This is experimentally applied also on live prostate cancer cells grown on the PhCS, reconstructing enhanced surface refractive index images at the single-cell level. This dual mechanism of quasi-BIC spatially variant gain tracked by quasi-BIC refractometric sensing provides a correlative imaging platform that can find application in many fields for monitoring physical and biochemical processes, such as molecular interactions, chemical reactions, or surface cell analysis.
在此,我们展示了一种利用全介质光子晶体平板(PhCS)进行的腔增强高光谱折射率成像。我们的方法利用了两种机制之间的协同作用,即基于近连续束缚态(BIC)中的表面增强荧光(SEF)和折射率传感的高共振。第一共振的增强局域光场将探针染料的 SEF 发射放大了 2 个数量级。同时,基于第二模式和荧光发射之间的 Fano 干涉的高光谱折射率传感用于绘制 PhCS 上由样本产生的空间变化折射率。第一共振和输入激光之间的光谱匹配由样本局部折射率调制,并且由于与 Fano 共振的光谱位移的校准依赖性,腔调谐用于实现具有 10 RIU 的分辨率的增强相关折射率图,在飞升级别采样体积内。这也在生长在 PhCS 上的活前列腺癌细胞上进行了实验应用,在单细胞水平上重建增强的表面折射率图像。这种由准 BIC 折射率传感跟踪的准 BIC 空间变化增益的双重机制提供了一种相关成像平台,可在许多领域找到应用,例如分子相互作用、化学反应或表面细胞分析等物理和生化过程的监测。