Lee Gil Ju, Kim Do Hyeon, Heo Se-Yeon, Song Young Min
School of Electrical Engineering and Computer Science (EECS), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
Anti-Virus Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
ACS Appl Mater Interfaces. 2020 Nov 25;12(47):53206-53214. doi: 10.1021/acsami.0c13177. Epub 2020 Nov 10.
Optimized thermal emitters using optical resonances have been attracting increased attention for diverse applications, such as infrared (IR) sensing, thermal imaging, gas sensing, thermophotovoltaics, thermal camouflage, and radiative cooling. Depending on the applications, the recently developed IR devices have been tailored to achieve not only spectrally engineered emission but also spatially resolved emission using various nanometallic structures, metamaterials, and multistacking layers, which accompany high structural complexity and prohibitive production cost. Herein, this article presents a simple and affordable approach to obtain spatially and spectrally selective hybrid thermal emitters (HTEs) based on spoof surface plasmons of microscaled Ag grooves manifested in encapsulation polymer layers. Theoretical analyses found that the polymer hybrid plasmonics allows diverse emission tuning within the long-wave IR (LWIR; 8-14 μm) region as follows: (1) spatially selective emission peaks only exist in the interface of Ag grooves and IR-transparent layers and (2) near-unity spectrally selective emission is obtained by refining inherent emissivity of a thin IR-opaque layer. Also, parametric studies computationally optimized the structural parameters for spatially and spectrally selective HTEs. Using the optimized parameters, the authors fabricated two HTEs and demonstrated the intriguing emission features in terms of infrared data encoding/decoding and radiative cooling, respectively. These successful demonstrations open up the applicability of HTEs for tailoring IR emission in a spatially and spectrally selective manner.
利用光学共振的优化热发射体在诸如红外(IR)传感、热成像、气体传感、热光伏、热伪装和辐射冷却等各种应用中受到了越来越多的关注。根据应用需求,最近开发的红外器件不仅通过各种纳米金属结构、超材料和多层堆叠层实现了光谱工程发射,还实现了空间分辨发射,但其结构复杂且生产成本高昂。在此,本文提出了一种简单且经济实惠的方法,以基于封装聚合物层中呈现的微尺度银槽的仿表面等离子体激元来获得空间和光谱选择性混合热发射体(HTE)。理论分析发现,聚合物混合等离子体激元允许在长波红外(LWIR;8 - 14μm)区域内进行多种发射调谐,如下所示:(1)空间选择性发射峰仅存在于银槽与红外透明层的界面处,(2)通过优化薄红外不透明层的固有发射率可获得接近单位的光谱选择性发射。此外,参数研究通过计算优化了空间和光谱选择性HTE的结构参数。利用优化后的参数,作者制作了两个HTE,并分别在红外数据编码/解码和辐射冷却方面展示了有趣的发射特性。这些成功的演示开启了HTE以空间和光谱选择性方式定制红外发射的应用前景。