Suppr超能文献

加纳 HIV 感染者中前驱糖尿病和糖尿病的患病率和发病率:来自 EVERLAST 研究的证据。

Prevalence and incidence of pre-diabetes and diabetes mellitus among people living with HIV in Ghana: Evidence from the EVERLAST Study.

机构信息

Department of Medicine, Kwame Nkrumah University of Science & Technology, Kumasi, Ghana.

Department of Medicine, Komfo Anokye Teaching Hospital, Kumasi, Ghana.

出版信息

HIV Med. 2021 Apr;22(4):231-243. doi: 10.1111/hiv.13007. Epub 2020 Nov 10.

Abstract

BACKGROUND

Available data from high-income countries suggest that people living with HIV (PLWH) have a four-fold higher risk of diabetes compared with HIV-negative people. In sub-Saharan Africa, with 80% of the global burden of HIV, there is a relative paucity of data on the burden and determinants of prevalent and incident dysglycaemia.

OBJECTIVES

To assess the prevalence and incidence of pre-diabetes (pre-DM) and overt diabetes mellitus (DM) among PLWH in a Ghanaian tertiary medical centre.

METHODS

We first performed a cross-sectional comparative analytical study involving PLWH on combination antiretroviral therapy (cART) (n = 258), PLWH not on cART (n = 244) and HIV-negative individuals (n = 242). Diabetes, pre-DM and normoglycaemia were defined as haemoglobin A1C (HBA1c) > 6.5%, in the range 5.7-6.4% and < 5.7% respectively. We then prospectively followed up the PLWH for 12 months to assess rates of new-onset DM, and composite of new-onset DM and pre-DM. Multivariate logistic regression models were fitted to identify factors associated with dysglycaemia among PLWH.

RESULTS

The frequencies of DM among PLWH on cART, PLWH not on cART and HIV-negative individuals were 7.4%, 6.6% and 7.4% (P = 0.91), respectively, while pre-DM prevalence rates were 13.2%, 27.9% and 27.3%, respectively (P < 0.0001). Prevalent DM was independently associated with increasing age [adjusted odds ratio (95% confidence interval) (aOR, 95% CI) = 1.82 (1.20-2.77) for each 10-year rise], male sex [aOR = 2.64 (1.20-5.80)] and log(triglyceride/HDL cholesterol) [aOR = 8.54 (2.53-28.83)]. Prevalent pre-DM was independently associated with being on cART [aOR (95% CI) = 0.35 (0.18-0.69)]. There were a total of 12 cases of incident DM over 359.25 person-years, giving 33.4/1000 person-years of follow-up (PYFU) (95% CI: 18.1-56.8/1000), and an rate of incident pre-DM of 212.7/1000 PYFU (95 CI: 164.5-270.9/1000). The two independent factors associated with new-onset DM were having pre-DM at enrolment [aOR = 6.27 (1.89-20.81)] and being established on cART at enrolment [aOR = 12.02 (1.48-97.70)].

CONCLUSIONS

Incidence rates of pre-DM and overt DM among Ghanaian PLWH on cART ranks among the highest in the literature. There is an urgent need for routine screening and a multidisciplinary approach to cardiovascular disease risk reduction among PLWH to reduce morbidity and mortality from the detrimental effects of dysglycaemia.

摘要

背景

来自高收入国家的现有数据表明,与 HIV 阴性人群相比,HIV 感染者(PLWH)患糖尿病的风险高四倍。在撒哈拉以南非洲,全球 HIV 负担的 80%发生在该地区,关于糖尿病前期(pre-DM)和显性糖尿病(DM)的流行率和发病情况及其决定因素的数据相对较少。

目的

评估加纳一家三级医疗中心接受联合抗逆转录病毒治疗(cART)的 PLWH 中 pre-DM 和显性 DM 的流行率和发病率。

方法

我们首先进行了一项横断面比较分析研究,纳入了接受 cART 的 PLWH(n=258)、未接受 cART 的 PLWH(n=244)和 HIV 阴性个体(n=242)。糖尿病、pre-DM 和血糖正常分别定义为血红蛋白 A1C(HBA1c)>6.5%、5.7%至 6.4%和<5.7%。然后,我们前瞻性随访 PLWH 12 个月,以评估新发 DM 及新发 DM 和 pre-DM 的复合发生率。使用多变量逻辑回归模型来确定与 PLWH 血糖异常相关的因素。

结果

接受 cART 的 PLWH、未接受 cART 的 PLWH 和 HIV 阴性个体的 DM 发生率分别为 7.4%、6.6%和 7.4%(P=0.91),pre-DM 患病率分别为 13.2%、27.9%和 27.3%(P<0.0001)。DM 的流行与年龄增长[调整后的优势比(95%置信区间)(aOR,95%CI)=1.82(1.20-2.77),每增加 10 岁]、男性[aOR=2.64(1.20-5.80)]和甘油三酯/高密度脂蛋白胆固醇比值[aOR=8.54(2.53-28.83)]独立相关。DM 的流行与接受 cART 独立相关[aOR(95%CI)=0.35(0.18-0.69)]。在 359.25 人年的随访中,共有 12 例发生新发 DM,随访 33.4/1000 人年(95%CI:18.1-56.8/1000),新发 pre-DM 的发生率为 212.7/1000 人年(95%CI:164.5-270.9/1000)。与新发 DM 相关的两个独立因素是基线时患有 pre-DM[aOR=6.27(1.89-20.81)]和基线时接受 cART[aOR=12.02(1.48-97.70)]。

结论

加纳接受 cART 的 PLWH 中 pre-DM 和显性 DM 的发生率在文献中属于最高之列。迫切需要对 PLWH 进行常规筛查和采取多学科方法来降低心血管疾病风险,以降低血糖异常的有害影响导致的发病率和死亡率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验