Department of Thoracic and Cardiovascular Surgery, University Medical Center Tübingen, Tübingen, Germany.
Section for Medical Material Science & Technology at the Department of Thoracic and Cardiovascular Surgery, University Medical Center Tübingen, Tübingen, Germany.
Perfusion. 2021 Nov;36(8):798-802. doi: 10.1177/0267659120967194. Epub 2020 Nov 11.
Patients with cardiogenic shock or ARDS, for example, in COVID-19/SARS-CoV-2, may require extracorporeal membrane oxygenation (ECMO). An ECLS/ECMO model simulating challenging vascular anatomy is desirable for cannula insertion training purposes. We assessed the ability of various 3D-printable materials to mimic the penetration properties of human tissue by using porcine aortae.
A test bench for needle penetration and piercing in sampled porcine aorta and preselected 3D-printable polymers was assembled. The 3D-printable materials had Shore A hardness of 10, 20, and 50. 17G Vygon 1.0 × 1.4 mm × 70 mm needles were used for penetration tests.
For the porcine tissue and Shore A 10, Shore A 20, and Shore A 50 polymers, penetration forces of 0.9036 N, 0.9725 N, 1.0386 N, and 1.254 N were needed, respectively. For piercing through the porcine tissue and Shore A 10, Shore A 20, and Shore A 50 polymers, forces of 0.8399 N, 1.244 N, 1.475 N, and 1.482 N were needed, respectively. ANOVA showed different variances among the groups, and pairwise two-tailed -tests showed significantly different needle penetration and piercing forces, except for penetration of Shore A 10 and 20 polymers (p = 0.234 and p = 0.0857). Significantly higher forces were required for all other materials.
Shore A 10 and 20 polymers have similar needle penetration properties compared to the porcine tissue. Significantly more force is needed to pierce through the material fully. The most similar tested material to porcine aorta for needle penetration and piercing in ECMO-implantation is the silicon Shore A 10 polymer. This silicon could be a 3D-printable material in surgical training for ECMO-implantation.
例如,患有心源性休克或 ARDS 的 COVID-19/SARS-CoV-2 患者可能需要体外膜肺氧合(ECMO)。为了进行插管培训,需要一种模拟挑战性血管解剖结构的体外生命支持/体外膜肺氧合模型。我们使用猪主动脉评估了各种可 3D 打印材料模拟人体组织穿透特性的能力。
组装了一个用于在取样的猪主动脉和预选的 3D 可打印聚合物上进行针穿透和刺穿测试的试验台。3D 可打印材料的肖氏 A 硬度为 10、20 和 50。使用 17G Vygon 1.0×1.4mm×70mm 针进行穿透测试。
对于猪组织和肖氏 A 硬度 10、20 和 50 聚合物,分别需要 0.9036N、0.9725N、1.0386N 和 1.254N 的穿透力。对于穿透猪组织和肖氏 A 硬度 10、20 和 50 聚合物,分别需要 0.8399N、1.244N、1.475N 和 1.482N 的力。方差分析显示组间存在不同的方差,双尾配对 -检验显示除肖氏 A 硬度 10 和 20 聚合物的穿透力(p=0.234 和 p=0.0857)外,穿透和刺穿力存在显著差异。所有其他材料都需要更高的力。
肖氏 A 硬度 10 和 20 聚合物与猪组织的针穿透特性相似。完全穿透材料需要更大的力。在 ECMO 植入中,用于针穿透和刺穿的最接近猪主动脉的测试材料是硅肖氏 A 硬度 10 聚合物。这种硅可能是 ECMO 植入手术培训中的一种可 3D 打印材料。