Díaz-Valderrama Jorge Ronny, Casa-Coila Víctor Hugo, Sencia-Torres Vladimir, Macedo-Valdivia Dennis, Zanabria-Gálvez Jackeline, Baributsa Dieudonné, Woloshuk Charles
Purdue University, 311308, Entomology, 901 W. State Street, Smith Hall Room 135, WEST LAFAYETTE, West Lafayette, Indiana, United States, 47907-2050;
Universidad Nacional de San Agustin de Arequipa, 121568, Facultad de Agronomía, Arequipa, Peru;
Plant Dis. 2020 Nov 11. doi: 10.1094/PDIS-09-20-2059-PDN.
Alfalfa (Medicago sativa) is the most cultivated fodder crop in Peru with 172,000 ha cultivated (MINAM 2019), and Arequipa is the top producing region with 40% of the national production in 2015 (Santamaría et al. 2016). In January-April 2019 (av. 20°C and 70% RH), most alfalfa fields in Majes-Pedregal, Arequipa were affected by an unidentified foliar disease. One of the fields was located at the farm of the Universidad Nacional de San Agustín de Arequipa (16°19'29.6" S, 72°12'59.9" W). Symptoms appeared as elliptical light brown spots witdark brown borders (Fig. S1a and b). The field (~60 × 60 m) was divided into ~30 × 12 m sections and two plants in each section were collected (20 plants total). Plants were digitized and the leaflet diseased area was calculated with ImageJ 1.53a, from which an incidence of 100% and a severity of 38.7 ± 4.4 % were estimated. Microscopical observations at the leaflet spots revealed consistently the presence of oblong multiseptated conidia (23.6-42.8 × 16.5-25.2 µm; av. 33.3 × 20.9 µm; n = 40) of the genus Stemphylium (Simmons 1969; Woudenberg et al. 2017) (Fig. S1c). We obtained 10 pure cultures by placing conidia from the spots directly onto potato dextrose agar medium with the aid of stereoscope and sterile forceps. Two isolates (UNSA-StemV01 and UNSA-StemV02) were incubated further until ascospore production at room temperature with no special light stimulus. After 45 days of growth, globose pseudothecia and ellipsoidal ascospores (25.4-38.7 × 11.2-16.6 µm; av. 31.9 × 13.7 µm; n = 30) formation occurred (Fig. S1d and e). We extracted the DNA from these two isolates using Wizard® Purification Kit (Promega Corp., Madison, WI) and sequenced the internal transcribed spacer 1 and 2 intervening 5.8S rDNA subunit (GenBank accessions: MT371236-37), and the glyceraldehyde-3-phosphate dehydrogenase (MT375513-14) and the calmodulin (MT375515-16) genes, highly resolutive markers to identify Stemphylium species, following Woudenberg et al. (2017). We retrieved sequence data available from 43 isolates of nine Stemphylium species (Han et al. 2019; Woudenberg et al. 2017), and built a mid-point rooted phylogeny with the three-loci concatenated data set (Fig. S2). We identified our isolates as S. vesicarium (Fig. S2). Koch's postulates were fulfilled by spray-inoculation with conidia from isolate UNSA-StemV01 suspended in sterile water (1×104 / mL) to two healthy 50-day old alfalfa plants growing on pots in the university greenhouse (av. 25°C and 70% RH). Two plants sprayed with sterile water without conidia served as control. Symptoms appeared after 21 days of inoculation, and when conidia were re-isolated, they were the same as originally obtained. No symptoms developed in the control plants. This confirmed that S. vesicarium is the causal agent of the alfalfa disease in Majes-Pedregal, identified as Stemphylium leaf spot. revious studies documented S. vesicarium on asparagus and onion in Peru (Castillo Valiente 2018; Vásquez Salas 2018; Vásquez Sangay 2013), but molecular characterization has only been applied to S. lycopersici from potatoes (Woudenberg et al. 2017). Stemphylium vesicarium has been documented in various crops, including alfalfa, and countries in Europe, North America, Africa, Asia and in Australia and New Zealand (Han et al. 2019; Woudenberg et al. 2017). This occurrence is the first report of S. vesicarium on alfalfa in Peru. The disease compromises the quality of this fodder crop, so actions need to be taken in Arequipa.
紫花苜蓿(Medicago sativa)是秘鲁种植最广泛的饲料作物,种植面积达17.2万公顷(秘鲁环境与气候变化部,2019年),阿雷基帕是产量最高的地区,2015年占全国产量的40%(圣玛丽亚等人,2016年)。在2019年1月至4月期间(平均温度20°C,相对湿度70%),阿雷基帕马耶斯-佩德雷加尔的大多数紫花苜蓿田受到一种不明叶部病害的影响。其中一块田地位于阿雷基帕圣奥古斯丁国立大学的农场(南纬16°19'29.6",西经72°12'59.9")。症状表现为椭圆形浅褐色斑点,边缘为深褐色(图S1a和b)。该田地(约60×60米)被划分为约30×12米的区域,每个区域采集两株植物(共20株)。对植物进行数字化处理,并用ImageJ 1.53a计算小叶病斑面积,据此估计发病率为100%,病情严重程度为38.7±4.4%。在小叶斑点处进行显微镜观察,始终发现存在链格孢属(Stemphylium)的长方形多隔分生孢子(23.6 - 42.8×16.5 - 25.2微米;平均33.3×20.9微米;n = 40)(西蒙斯,1969年;伍登伯格等人,2017年)(图S1c)。借助体视显微镜和无菌镊子,将斑点处的分生孢子直接接种到马铃薯葡萄糖琼脂培养基上,获得了10个纯培养物。将两个分离株(UNSA - StemV01和UNSA - StemV02)在室温下进一步培养,不给予特殊光照刺激,直至产生子囊孢子。生长45天后,形成了球形假囊壳和椭圆形子囊孢子(25.4 - 38.7×11.2 - 16.6微米;平均31.9×13.7微米;n = 30)(图S1d和e)。使用Wizard®纯化试剂盒(Promega公司,威斯康星州麦迪逊)从这两个分离株中提取DNA,并对5.8S核糖体DNA亚基间隔的内部转录间隔区1和2(GenBank登录号:MT371236 - 37)、甘油醛 - 3 - 磷酸脱氢酶(MT375513 - 14)和钙调蛋白(MT375515 - 16)基因进行测序,这些是用于鉴定链格孢属物种的高分辨率标记,方法参照伍登伯格等人(2017年)。我们检索了来自9个链格孢属物种的43个分离株的序列数据(韩等人,2019年;伍登伯格等人,2017年),并使用三个基因座的串联数据集构建了一个中点有根系统发育树(图S2)。我们将我们的分离株鉴定为番茄链格孢(S. vesicarium)(图S2)。通过将分离株UNSA - StemV01的分生孢子悬浮于无菌水中(1×104 / mL)喷雾接种到大学温室中生长在花盆里的两株健康的50日龄紫花苜蓿植株上(平均温度25°C,相对湿度70%),验证了柯赫氏法则。两株喷洒无菌水而无分生孢子的植株作为对照。接种21天后出现症状,重新分离得到的分生孢子与最初获得的相同。对照植株未出现症状。这证实了番茄链格孢是马耶斯 - 佩德雷加尔紫花苜蓿病害的病原菌,该病害被鉴定为链格孢叶斑病。先前的研究记录了秘鲁芦笋和洋葱上的番茄链格孢(卡斯蒂略·瓦伦特,2018年;巴斯克斯·萨拉斯,2018年;巴斯克斯·桑盖,2013年),但分子特征分析仅应用于马铃薯上的番茄链格孢(伍登伯格等人,2017年)。番茄链格孢已在包括紫花苜蓿在内的多种作物以及欧洲、北美、非洲、亚洲以及澳大利亚和新西兰的国家被记录(韩等人,2019年;伍登伯格等人,2017年)。此次发生是秘鲁紫花苜蓿上番茄链格孢的首次报道。这种病害会影响这种饲料作物的质量,因此阿雷基帕需要采取行动。