Hanna John W, Klopfenstein Ned B, Cram Michelle M, Olatinwo Rabiu O, Fraedrich Stephen W, Kim Mee-Sook
USDA Forest Service Rocky Mountain Research Station, 116528, Moscow, Idaho, United States;
USDA Forest Service, Forest Health Protection, Athens, Georgia, United States;
Plant Dis. 2020 Nov 11. doi: 10.1094/PDIS-07-20-1567-PDN.
Armillaria root and butt diseases, which are a global issue, can be influenced by changing environmental conditions. Armillaria gallica is a well-known pathogen of diverse trees worldwide (Brazee and Wick 2009). Besides A. gallica causing root rot of Hemerocallis sp. and Cornus sp. in South Carolina (Schnabel et al. 2005), little is reported on the distribution and host range of A. gallica in the southeastern USA. In July 2017, three Armillaria isolates were obtained from two naturally occurring hosts in Georgia, USA and cultured on malt extract medium (3% malt extract, 3% dextrose, 1% peptone, and 1.5% agar). One isolate (GA3) was obtained in Unicoi State Park near Helen, Georgia (Lat. 34.712275, Long. -83.727765, elev. 498 m) from the basal portion of Rhododendron sp. with extensive root/butt decay, but no crown symptoms were evident (Supplementary Figure 1). GA4 and GA5 (Lat. 33.902433, Long. -83.382453, elev. 215 m) were isolated from wind-felled Quercus rubra (red oak) with root disease at the State Botanical Gardens in Athens, Georgia. GA4 was associated with a large root ball (ca. 4-m diameter) (Supplementary Figure 2), and GA5 was obtained from a mature tree with infected roots, with characteristic spongy rot of Armillaria root disease. Crown symptoms could not be evaluated because the crowns had been removed before the collections. Several other oaks with Armillaria root disease were noted throughout the State Botanical Gardens. Pairing tests reduced these three isolates (whiteish mycelia with a dark, brownish crust and rhizomorphs), to two genets with GA4 = GA5. Both genets (GA3 and GA4) were identified as A. gallica using translation elongation factor 1α (tef1) sequences (Genbank Nos. MT761697 and MT761698, respectively) that showed ≥ 97% identity (≥ 98% coverage) with A. gallica sequences (KF156772, KF156775). Also, nine replications of somatic pairing tests showed 33 - 67% compatibility with A. gallica (occurs in southeastern USA), compared with 0 - 22% for A. mexicana, A. mellea (occurs in southeastern USA), A. solidipes, and Desarmillaria tabescens (occurs in southeastern USA). To our knowledge, this note represents the first report of A. gallica on Rhododendron and Q. rubra in Georgia, USA, which has experienced severe drought in recent decades (e.g., Park Williams et al. 2017) that could predispose trees to Armillaria infection (e.g., Wargo 1996). Quercus rubra was previously reported as a host of A. gallica in Arkansas (Kelley et al. 2009) and Massachusetts (Brazee and Wick 2009), USA. In Missouri, USA, A. gallica has been reported as a weak pathogen with potential biological control against A. mellea (Bruhn et al. 2000). Other reports from several regions on various hosts suggest pathogenicity of A. gallica is associated with changing climate (Nelson et al. 2013, Kim et al. 2017, Kubiak et al. 2017). Wide genetic variation and/or cryptic speciation within A. gallica may account for differences in ecological behavior (Klopfenstein et al. 2017), but this is difficult to evaluate because Armillaria pathogenicity tests cannot be used on most forest tree seedlings. This study suggests that A. gallica is more widespread than previously known and its adverse impacts on woody plants may intensify over time, depending on the environmental conditions. Further studies are needed to determine environmental influences on A. gallica, the full distribution of A. gallica, and its effects in forests of the southeastern USA.
蜜环菌根腐病是一个全球性问题,其会受到不断变化的环境条件的影响。蜜环菌是全球多种树木中一种广为人知的病原体(布拉齐和威克,2009年)。除了蜜环菌在美国南卡罗来纳州引起萱草属植物和山茱萸属植物的根腐病(施纳贝尔等人,2005年)外,关于蜜环菌在美国东南部的分布和寄主范围的报道很少。2017年7月,从美国佐治亚州的两种自然寄主中获得了三株蜜环菌分离株,并在麦芽提取物培养基(3%麦芽提取物、3%葡萄糖、1%蛋白胨和1.5%琼脂)上进行培养。其中一个分离株(GA3)是在佐治亚州海伦附近的尤尼科伊州立公园(北纬34.712275,西经-83.727765,海拔498米)从杜鹃花属植物基部获得的,该植物根部/树基部有广泛腐烂,但无明显树冠症状(补充图1)。GA4和GA5(北纬33.902433,西经-83.382453,海拔215米)是从佐治亚州雅典市州立植物园一棵因根病而被风刮倒的红栎(红橡树)上分离得到的。GA4与一个大根球(直径约4米)有关(补充图2),GA5是从一棵根部受感染的成熟树上获得的,具有蜜环菌根腐病典型的海绵状腐烂。由于在采集前树冠已被移除,因此无法评估树冠症状。在州立植物园还发现了其他几棵患有蜜环菌根腐病的橡树。配对试验将这三个分离株(白色菌丝体,带有深色、褐色外皮和菌索)归为两个遗传型,即GA4 = GA5。利用翻译延伸因子1α(tef1)序列(Genbank编号分别为MT761697和MT761698)将这两个遗传型(GA3和GA4)鉴定为蜜环菌,它们与蜜环菌序列(KF156772、KF156775)显示出≥97%的同一性(≥98%的覆盖率)。此外,体细胞配对试验的九次重复显示,与蜜环菌(分布于美国东南部)的相容性为33 - 67%,而与墨西哥蜜环菌、蜜环菌(分布于美国东南部)、坚固蜜环菌和消失蜜环菌(分布于美国东南部)的相容性为0 - 22%。据我们所知,本报告是蜜环菌在美国佐治亚州杜鹃花和红栎上的首次报道,佐治亚州近几十年来经历了严重干旱(例如,帕克·威廉姆斯等人,2017年),这可能使树木易受蜜环菌感染(例如,瓦尔戈,1996年)。红栎先前在美国阿肯色州(凯利等人,2009年)和马萨诸塞州(布拉齐和威克,2009年)被报道为蜜环菌的寄主。在美国密苏里州,蜜环菌被报道为一种弱病原体,对蜜环菌具有潜在的生物防治作用(布鲁恩等人,2000年)。来自几个地区关于各种寄主的其他报道表明,蜜环菌的致病性与气候变化有关(尼尔森等人,2013年;金等人,2017年;库比亚克等人,2017年)。蜜环菌内广泛的遗传变异和/或隐性物种形成可能解释了其生态行为的差异(克洛普芬斯坦等人,2017年),但这很难评估,因为大多数林木幼苗无法进行蜜环菌致病性试验。本研究表明,蜜环菌的分布比以前所知的更为广泛,其对木本植物的不利影响可能会随着时间的推移而加剧,这取决于环境条件。需要进一步研究以确定环境对蜜环菌的影响、蜜环菌的完整分布及其在美国东南部森林中的影响。