Suppr超能文献

协变量对加速失效时间模型中交替复发事件的影响。

Effects of covariates on alternating recurrent events in accelerated failure time models.

机构信息

Department of Mathematics and Statistics, Aliah University, IIA/27, New Town, Kolkata 700160, India.

Department of Statistics, University of Calcutta, 35, Ballygunge Circular Road, Calcutta 700019, India.

出版信息

Int J Biostat. 2020 Nov 12;17(2):295-315. doi: 10.1515/ijb-2019-0099.

Abstract

In this article, we model alternately occurring recurrent events and study the effects of covariates on each of the survival times. This is done through the accelerated failure time models, where we use lagged event times to capture the dependence over both the cycles and the two events. However, since the errors of the two regression models are likely to be correlated, we assume a bivariate error distribution. Since most event time distributions do not readily extend to bivariate forms, we take recourse to copula functions to build up the bivariate distributions from the marginals. The model parameters are then estimated using the maximum likelihood method and the properties of the estimators studied. A data on respiratory disease is used to illustrate the technique. A simulation study is also conducted to check for consistency.

摘要

在本文中,我们对交替出现的复发事件进行建模,并研究协变量对每个生存时间的影响。这是通过加速失效时间模型来实现的,我们使用滞后事件时间来捕捉两个事件之间的循环和依赖性。然而,由于两个回归模型的误差很可能是相关的,我们假设了一个二元误差分布。由于大多数事件时间分布不易扩展到二元形式,我们求助于 Copula 函数从边缘分布构建二元分布。然后使用最大似然法估计模型参数,并研究估计量的性质。使用呼吸疾病的数据来说明该技术。还进行了模拟研究以检查一致性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验