Suppr超能文献

电压门控中性溶质通过纳米孔的输运:分子视角。

Voltage-Dependent Transport of Neutral Solutes through Nanopores: A Molecular View.

机构信息

Department of Physics and Earth Sciences, Jacobs University Bremen, 28759 Bremen, Germany.

出版信息

J Phys Chem B. 2020 Nov 25;124(47):10718-10731. doi: 10.1021/acs.jpcb.0c08401. Epub 2020 Nov 11.

Abstract

The permeation of (neutral) molecules through nanopores in the presence of external voltages depends on several factors including pore electrostatics, electrophoretic force, and electro-osmotic drag. In earlier single-channel electrophysiology experiments, voltage-dependent asymmetric transport of neutral α-cyclodextrin (α-CD) molecules through the biological nanopore ΔCymA was observed. The voltage-dependent ion-associated flow of water, the so-called electro-osmotic flow, has been suggested to be the key factor behind the observed asymmetric behavior. The influence of pore electrostatics and electrophoretic force and their interplay with the electro-osmotic drag with varying buffers and voltages has not yet been analyzed at the molecular level. Hence, the detailed physical mechanism behind this intriguing permeation process is in part still unclear. In the present study, we have performed 36 μs all-atom free energy calculations by combining applied-field molecular dynamics simulations with metadynamics techniques. The influence of several ionic conditions as well as external voltages on the permeation of α-CD molecules across the ΔCymA pore has been investigated. To decipher the thermodynamic and kinetic details, the lowest energy paths and the permeation times for α-CD translocation have been estimated. In the presence of KCl or MgCl salts, the charge of the cations is found to control the direction and magnitude of the electro-osmotic flow, which in turn strongly affects α-CD permeation. Overall, the present findings significantly improve the fundamental understanding of the voltage-dependent transport of neutral solutes across nanopores.

摘要

在存在外部电压的情况下,(中性)分子通过纳米孔的渗透取决于几个因素,包括孔静电、电泳力和电动渗透拖曳。在早期的单通道电生理学实验中,观察到中性α-环糊精(α-CD)分子通过生物纳米孔ΔCymA 的电压依赖性不对称传输。电压依赖性离子相关的水流动,即所谓的电动渗透流,被认为是观察到的不对称行为的关键因素。孔静电和电泳力的影响及其与电动渗透拖曳的相互作用,以及不同缓冲液和电压的影响,尚未在分子水平上进行分析。因此,这种有趣的渗透过程背后的详细物理机制在某种程度上仍不清楚。在本研究中,我们通过将外加场分子动力学模拟与元动力学技术相结合,进行了 36 μs 的全原子自由能计算。研究了几种离子条件和外加电压对α-CD 分子穿过ΔCymA 孔渗透的影响。为了解密热力学和动力学细节,估计了α-CD 迁移的最低能量路径和渗透时间。在 KCl 或 MgCl 盐的存在下,阳离子的电荷被发现控制电动渗透流的方向和大小,这反过来又强烈影响α-CD 的渗透。总的来说,目前的发现显著提高了对纳米孔中中性溶质电压依赖性传输的基本理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验