Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
J Chem Phys. 2024 Feb 28;160(8). doi: 10.1063/5.0185574.
Electro-osmotic flow (EOF) is a phenomenon where fluid motion occurs in porous materials or micro/nano-channels when an external electric field is applied. In the particular example of single-molecule electrophoresis using single nanopores, the role of EOF on the translocation velocity of the analyte molecule through the nanopore is not fully understood. The complexity arises from a combination of effects from hydrodynamics in restricted environments, electrostatics emanating from charge decorations and geometry of the pores. We address this fundamental issue using the Poisson-Nernst-Planck and Navier-Stokes (PNP-NS) equations for cylindrical solid-state nanopores and three representative protein nanopores (α-hemolysin, MspA, and CsgG). We present the velocity profiles inside the nanopores as a function of charge decoration and geometry of the pore and applied electric field. We report several unexpected results: (a) The apparent charges of the protein nanopores are different from their net charge and the surface charge of the whole protein geometry, and the net charge of inner surface is consistent with the apparent charge. (b) The fluid velocity depends non-monotonically on voltage. The three protein nanopores exhibit unique EOF and velocity-voltage relations, which cannot be simply deduced from their net charge. Furthermore, effective point mutations can significantly change both the direction and the magnitude of EOF. The present computational analysis offers an opportunity to further understand the origins of the speed of transport of charged macromolecules in restricted space and to design desirable nanopores for tuning the speed of macromolecules through nanopores.
电渗流(EOF)是在外加电场作用下,多孔材料或微/纳通道中发生流体运动的现象。在使用单纳米孔的单分子电泳的特殊示例中,EOF 对分析物分子通过纳米孔的迁移速度的影响尚未完全了解。这种复杂性源于受限环境中的流体动力学、来自电荷修饰和孔几何形状的静电以及其他因素的综合影响。我们使用泊松-纳维-斯托克斯(PNP-NS)方程和三个有代表性的蛋白质纳米孔(α-溶血素、MspA 和 CsgG)来解决这个基本问题。我们给出了纳米孔内速度分布作为电荷修饰、孔径和外加电场的函数。我们报告了一些意想不到的结果:(a)蛋白质纳米孔的表观电荷与它们的净电荷和整个蛋白质几何形状的表面电荷不同,内表面的净电荷与表观电荷一致。(b)流体速度与电压呈非单调关系。这三种蛋白质纳米孔表现出独特的 EOF 和速度-电压关系,不能简单地从它们的净电荷中推断出来。此外,有效点突变可以显著改变 EOF 的方向和大小。本计算分析为进一步了解在受限空间中带电荷大分子的传输速度的起源以及设计用于调节大分子通过纳米孔的速度的理想纳米孔提供了机会。