Suppr超能文献

新冠疫情与数字金融。

COVID-19 contagion and digital finance.

作者信息

Agosto Arianna, Giudici Paolo

机构信息

University of Pavia, Pavia, Italy.

出版信息

Digit Finance. 2020;2(1-2):159-167. doi: 10.1007/s42521-020-00021-3. Epub 2020 May 11.

Abstract

Digital finance is going to be heavily affected by the COVID-19 outbreak. We present a statistical model which can be employed to understand the contagion dynamics of the COVID-19, so that its impact on finance can possibly be anticipated, and digitally monitored. The model is a Poisson autoregression of the daily new observed cases, and considers both short-term and long-term dependence in the infections counts. Model results are presented for the observed time series of China, the first affected country, but can be easily reproduced for all countries.

摘要

数字金融将受到新冠疫情的严重影响。我们提出了一个统计模型,可用于理解新冠疫情的传播动态,从而有可能预测其对金融的影响并进行数字监测。该模型是对每日新增确诊病例的泊松自回归模型,同时考虑了感染病例数的短期和长期依赖性。我们给出了首个受影响国家中国的观测时间序列的模型结果,不过该结果很容易应用于所有国家。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/300b/7211562/a4cd0b9ee7a0/42521_2020_21_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验