Celani Alessandro, Giudici Paolo
Dipartimento di Scienze Economiche e Sociali, Polytechnic University of Marche, Piazzale Raffaele Martelli 8, 60121 Ancona, Italy.
Dipartimento di Scienze Economiche e Aziendali, University of Pavia, Via San Felice al Monastero 5, 27100 Pavia, Italy.
Spat Stat. 2022 Jun;49:100528. doi: 10.1016/j.spasta.2021.100528. Epub 2021 Jul 12.
We propose an endemic-epidemic model: a negative binomial space-time autoregression, which can be employed to monitor the contagion dynamics of the COVID-19 pandemic, both in time and in space. The model is exemplified through an empirical analysis of the provinces of northern Italy, heavily affected by the pandemic and characterized by similar non-pharmaceutical policy interventions.
我们提出了一种地方病-流行病模型:负二项时空自回归模型,该模型可用于监测新冠疫情在时间和空间上的传播动态。通过对意大利北部省份的实证分析对该模型进行了例证,这些省份受疫情影响严重,且具有相似的非药物政策干预措施。