Suppr超能文献

手性双层全介质超表面

Chiral Bilayer All-Dielectric Metasurfaces.

作者信息

Tanaka Katsuya, Arslan Dennis, Fasold Stefan, Steinert Michael, Sautter Jürgen, Falkner Matthias, Pertsch Thomas, Decker Manuel, Staude Isabelle

机构信息

Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 15, 07745 Jena, Germany.

Max Planck School of Photonics, Hans-Knöll-Straße 1, 07745 Jena, Germany.

出版信息

ACS Nano. 2020 Nov 24;14(11):15926-15935. doi: 10.1021/acsnano.0c07295. Epub 2020 Nov 12.

Abstract

Three-dimensional chiral plasmonic metasurfaces were demonstrated to offer enormous potential for ultrathin circular polarizers and applications in chiral sensing. However, the large absorption losses in the metallic systems generally limit their applicability for high-efficiency devices. In this work, we experimentally and numerically demonstrate three-dimensional chiral dielectric metasurfaces exhibiting multipolar resonances and examine their chiro-optical properties. In particular, we demonstrate that record high circular dichroism of 0.7 and optical activity of 2.67 × 10 degree/mm can be achieved based on the excitation of electric and magnetic dipolar resonances inside the chiral structures. These large values are facilitated by a small amount of dissipative loss present in the dielectric nanoresonator material and the formation of a chiral supermode in a 4-fold symmetric metasurface unit cell. Our results highlight the mechanisms for maximizing the chiral response of photonic nanostructures and offer important opportunities for high-efficiency, ultrathin polarizing elements, which can be used in miniaturized devices, for example, integrated circuits.

摘要

三维手性等离子体超表面已被证明在超薄圆偏振器和手性传感应用方面具有巨大潜力。然而,金属系统中的大量吸收损耗通常限制了它们在高效器件中的适用性。在这项工作中,我们通过实验和数值方法证明了具有多极共振的三维手性介电超表面,并研究了它们的手性光学性质。特别是,我们证明了基于手性结构内部电偶极和磁偶极共振的激发,可以实现创纪录的0.7的圆二色性和2.67×10度/毫米的旋光性。介电纳米谐振器材料中存在的少量耗散损耗以及四重对称超表面单元胞中手性超模的形成有助于实现这些大值。我们的结果突出了使光子纳米结构的手性响应最大化的机制,并为可用于小型化器件(例如集成电路)的高效、超薄偏振元件提供了重要机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验