IEEE Trans Neural Netw Learn Syst. 2022 Feb;33(2):644-653. doi: 10.1109/TNNLS.2020.3028431. Epub 2022 Feb 3.
Deep neural networks (DNNs) are shown to be excellent solutions to staggering and sophisticated problems in machine learning. A key reason for their success is due to the strong expressive power of function representation. For piecewise linear neural networks (PLNNs), the number of linear regions is a natural measure of their expressive power since it characterizes the number of linear pieces available to model complex patterns. In this article, we theoretically analyze the expressive power of PLNNs by counting and bounding the number of linear regions. We first refine the existing upper and lower bounds on the number of linear regions of PLNNs with rectified linear units (ReLU PLNNs). Next, we extend the analysis to PLNNs with general piecewise linear (PWL) activation functions and derive the exact maximum number of linear regions of single-layer PLNNs. Moreover, the upper and lower bounds on the number of linear regions of multilayer PLNNs are obtained, both of which scale polynomially with the number of neurons at each layer and pieces of PWL activation function but exponentially with the number of layers. This key property enables deep PLNNs with complex activation functions to outperform their shallow counterparts when computing highly complex and structured functions, which, to some extent, explains the performance improvement of deep PLNNs in classification and function fitting.
深度神经网络 (DNN) 被证明是解决机器学习中棘手和复杂问题的出色解决方案。它们成功的一个关键原因是由于函数表示的强大表达能力。对于分段线性神经网络 (PLNN),线性区域的数量是其表达能力的自然度量,因为它表征了可用于建模复杂模式的线性部分的数量。在本文中,我们通过计数和限制线性区域的数量来从理论上分析 PLNN 的表达能力。我们首先细化了具有修正线性单元 (ReLU PLNN) 的 PLNN 线性区域数量的现有上限和下限。接下来,我们将分析扩展到具有一般分段线性 (PWL) 激活函数的 PLNN,并推导出单层 PLNN 的最大线性区域数量。此外,还获得了多层 PLNN 线性区域数量的上限和下限,它们都与每层的神经元数量和 PWL 激活函数的部分呈多项式关系,但与层数呈指数关系。这个关键特性使得具有复杂激活函数的深层 PLNN 在计算高度复杂和结构化的函数时能够胜过浅层 PLNN,这在一定程度上解释了深层 PLNN 在分类和函数拟合方面的性能提升。