IEEE Trans Neural Netw Learn Syst. 2022 Feb;33(2):866-878. doi: 10.1109/TNNLS.2020.3029613. Epub 2022 Feb 3.
In this article, we present a novel lightweight path for deep residual neural networks. The proposed method integrates a simple plug-and-play module, i.e., a convolutional encoder-decoder (ED), as an augmented path to the original residual building block. Due to the abstract design and ability of the encoding stage, the decoder part tends to generate feature maps where highly semantically relevant responses are activated, while irrelevant responses are restrained. By a simple elementwise addition operation, the learned representations derived from the identity shortcut and original transformation branch are enhanced by our ED path. Furthermore, we exploit lightweight counterparts by removing a portion of channels in the original transformation branch. Fortunately, our lightweight processing does not cause an obvious performance drop but brings a computational economy. By conducting comprehensive experiments on ImageNet, MS-COCO, CUB200-2011, and CIFAR, we demonstrate the consistent accuracy gain obtained by our ED path for various residual architectures, with comparable or even lower model complexity. Concretely, it decreases the top-1 error of ResNet-50 and ResNet-101 by 1.22% and 0.91% on the task of ImageNet classification and increases the mmAP of Faster R-CNN with ResNet-101 by 2.5% on the MS-COCO object detection task. The code is available at https://github.com/Megvii-Nanjing/ED-Net.
在本文中,我们提出了一种新的轻量级深度残差神经网络路径。所提出的方法集成了一个简单的即插即用模块,即卷积编解码器 (ED),作为原始残差构建块的增强路径。由于编码阶段的抽象设计和能力,解码器部分倾向于生成特征图,其中激活了高度语义相关的响应,而抑制了不相关的响应。通过简单的元素级加法操作,从身份捷径和原始变换分支学习到的表示被我们的 ED 路径增强。此外,我们通过去除原始变换分支中的一部分通道来利用轻量级对应物。幸运的是,我们的轻量级处理不会导致明显的性能下降,而是带来计算经济性。通过在 ImageNet、MS-COCO、CUB200-2011 和 CIFAR 上进行全面实验,我们证明了 ED 路径对于各种残差架构的一致性准确性增益,具有可比甚至更低的模型复杂度。具体来说,它将 ResNet-50 和 ResNet-101 在 ImageNet 分类任务中的 top-1 错误分别降低了 1.22%和 0.91%,并将 Faster R-CNN 在 MS-COCO 目标检测任务中的 mmAP 提高了 2.5%。代码可在 https://github.com/Megvii-Nanjing/ED-Net 上获得。