Suppr超能文献

脑肿瘤患者出院去向预测模型及在线计算器

Predictive Model and Online Calculator for Discharge Disposition in Brain Tumor Patients.

机构信息

Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

出版信息

World Neurosurg. 2021 Feb;146:e786-e798. doi: 10.1016/j.wneu.2020.11.018. Epub 2020 Nov 10.

Abstract

BACKGROUND

In the era of value-based payment models, it is imperative for neurosurgeons to eliminate inefficiencies and provide high-quality care. Discharge disposition is a relevant consideration with clinical and economic ramifications in brain tumor patients. We developed a predictive model and online calculator for postoperative non-home discharge disposition in brain tumor patients that can be incorporated into preoperative workflows.

METHODS

We reviewed all brain tumor patients at our institution from 2017 to 2019. A predictive model of discharge disposition containing preoperatively available variables was developed using stepwise multivariable logistic regression. Model performance was assessed using receiver operating characteristic curves and calibration curves. Internal validation was performed using bootstrapping with 2000 samples.

RESULTS

Our cohort included 2335 patients who underwent 2586 surgeries with a 16% non-home discharge rate. Significant predictors of non-home discharge were age >60 years (odds ratio [OR], 2.02), African American (OR, 1.73) or Asian (OR, 2.05) race, unmarried status (OR, 1.48), Medicaid insurance (OR, 1.90), admission from another health care facility (OR, 2.30), higher 5-factor modified frailty index (OR, 1.61 for 5-factor modified frailty index ≥2), and lower Karnofsky Performance Status (increasing OR with each 10-point decrease in Karnofsky Performance Status). The model was well calibrated and had excellent discrimination (optimism-corrected C-statistic, 0.82). An open-access calculator was deployed (https://neurooncsurgery.shinyapps.io/discharge_calc/).

CONCLUSIONS

A strongly performing predictive model and online calculator for non-home discharge disposition in brain tumor patients was developed. With further validation, this tool may facilitate more efficient discharge planning, with consequent improvements in quality and value of care for brain tumor patients.

摘要

背景

在基于价值的支付模式时代,神经外科医生必须消除效率低下并提供高质量的护理。出院安排是脑肿瘤患者具有临床和经济影响的相关考虑因素。我们开发了一种预测模型和在线计算器,可用于预测脑肿瘤患者术后非居家出院安排,可将其纳入术前工作流程。

方法

我们回顾了 2017 年至 2019 年期间我院所有脑肿瘤患者的资料。使用逐步多变量逻辑回归方法,建立了包含术前可用变量的出院安排预测模型。使用接收者操作特征曲线和校准曲线评估模型性能。使用 2000 个样本的自举法进行内部验证。

结果

我们的队列包括 2335 名接受了 2586 次手术的患者,其中非居家出院率为 16%。非居家出院的显著预测因素包括年龄>60 岁(优势比 [OR],2.02)、非裔美国人(OR,1.73)或亚洲人(OR,2.05)种族、未婚状态(OR,1.48)、医疗补助保险(OR,1.90)、从其他医疗机构入院(OR,2.30)、较高的 5 因素改良虚弱指数(OR,5 因素改良虚弱指数≥2 时为 1.61)和较低的 Karnofsky 表现状态(Karnofsky 表现状态每降低 10 分,OR 增加)。该模型校准良好,具有良好的区分度(经校正的乐观 C 统计量为 0.82)。部署了一个开放访问计算器(https://neurooncsurgery.shinyapps.io/discharge_calc/)。

结论

开发了一种用于脑肿瘤患者非居家出院安排的预测模型和在线计算器,性能良好。经过进一步验证,该工具可能有助于更有效地进行出院计划,从而提高脑肿瘤患者的护理质量和价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验