Suppr超能文献

RAI 测量的虚弱程度可预测转移性脑肿瘤切除术后非居家出院:20185 例患者的全国住院患者样本分析。

RAI-measured frailty predicts non-home discharge following metastatic brain tumor resection: national inpatient sample analysis of 20,185 patients.

机构信息

School of Medicine, Georgetown University, Washington, District of Columbia, USA.

New Jersey Medical School, Newark, New Jersey, USA.

出版信息

J Neurooncol. 2023 Sep;164(3):663-670. doi: 10.1007/s11060-023-04461-w. Epub 2023 Oct 3.

Abstract

PURPOSE

Preoperative risk stratification for patients undergoing metastatic brain tumor resection (MBTR) is based on established tumor-, patient-, and disease-specific risk factors for outcome prognostication. Frailty, or decreased baseline physiologic reserve, is a demonstrated independent risk factor for adverse outcomes following MBTR. The present study sought to assess the impact of frailty, measured by the Risk Analysis Index (RAI), on MBTR outcomes.

METHODS

All MBTR were queried from the National Inpatient Sample (NIS) from 2019 to 2020 using diagnosis and procedural codes. The relationship between preoperative RAI frailty score and our primary outcome - non-home discharge (NHD) - and secondary outcomes - complication rates, extended length of stay (eLOS), and mortality - were analyzed via univariate and multivariable analyses. Discriminatory accuracy was tested by computation of concordance statistics in area under the receiver operating characteristic (AUROC) curve analysis.

RESULTS

There were 20,185 MBTR patients from the NIS database from 2019 to 2020. Each patient's frailty status was stratified by RAI score: 0-20 (robust): 34%, 21-30 (normal): 35.1%, 31-40 (very frail): 13.9%, 41+ (severely frail): 16.8%. Compared to robust patients, severely frail patients demonstrated increased complication rates (12.2% vs. 6.8%, p < 0.001), eLOS (37.6% vs. 13.2%, p < 0.001), NHD (52.0% vs. 20.6%, p < 0.001), and mortality (9.9% vs. 4.1%, p < 0.001). AUROC curve analysis demonstrated good discriminatory accuracy of RAI-measured frailty in predicting NHD after MBTR (C-statistic = 0.67).

CONCLUSION

Increasing RAI-measured frailty status is significantly associated with increased complication rates, eLOS, NHD, and mortality following MBTR. Preoperative frailty assessment using the RAI may aid in preoperative surgical planning and risk stratification for patient selection.

摘要

目的

对接受转移性脑肿瘤切除术(MBTR)的患者进行术前风险分层,是基于肿瘤、患者和疾病特异性的预后预测因素。虚弱或基础生理储备下降是 MBTR 后不良结局的独立危险因素。本研究旨在评估通过风险分析指数(RAI)测量的虚弱程度对 MBTR 结局的影响。

方法

使用诊断和手术代码,从 2019 年至 2020 年,从国家住院患者样本(NIS)中查询所有 MBTR。通过单变量和多变量分析,分析术前 RAI 虚弱评分与主要结局-非家庭出院(NHD)-和次要结局-并发症发生率、延长住院时间(eLOS)和死亡率之间的关系。通过计算接收者操作特征(ROC)曲线分析中的一致性统计量来测试判别准确性。

结果

从 2019 年至 2020 年的 NIS 数据库中,有 20185 名 MBTR 患者。根据 RAI 评分将每位患者的虚弱状态分层:0-20(强壮):34%,21-30(正常):35.1%,31-40(非常虚弱):13.9%,41+(严重虚弱):16.8%。与强壮的患者相比,严重虚弱的患者并发症发生率更高(12.2%比 6.8%,p<0.001)、eLOS 更长(37.6%比 13.2%,p<0.001)、NHD 更高(52.0%比 20.6%,p<0.001)和死亡率更高(9.9%比 4.1%,p<0.001)。ROC 曲线分析表明,RAI 测量的虚弱程度在预测 MBTR 后 NHD 方面具有良好的判别准确性(C 统计量=0.67)。

结论

RAI 测量的虚弱程度增加与 MBTR 后并发症发生率、eLOS、NHD 和死亡率增加显著相关。术前使用 RAI 评估虚弱程度可能有助于术前手术计划和患者选择的风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验