Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30191-30200. doi: 10.1073/pnas.2008421117. Epub 2020 Nov 12.
Escalating global water scarcity necessitates high-performance desalination membranes, for which fundamental understanding of structure-property-performance relationships is required. In this study, we comprehensively assess the ionization behavior of nanoporous polyamide selective layers in state-of-the-art nanofiltration (NF) membranes. In these films, residual carboxylic acids and amines influence permeability and selectivity by imparting hydrophilicity and ionizable moieties that can exclude coions. We utilize layered interfacial polymerization to prepare physically and chemically similar selective layers of controlled thickness. We then demonstrate location-dependent ionization of carboxyl groups in NF polyamide films. Specifically, only surface carboxyl groups ionize under neutral pH, whereas interior carboxyl ionization requires pH >9. Conversely, amine ionization behaves invariably across the film. First-principles simulations reveal that the low permittivity of nanoconfined water drives the anomalous carboxyl ionization behavior. Furthermore, we report that interior carboxyl ionization could improve the water-salt permselectivity of NF membranes over fourfold, suggesting that interior charge density could be an important tool to enhance the selectivity of polyamide membranes. Our findings highlight the influence of nanoconfinement on membrane transport properties and provide enhanced fundamental understanding of ionization that could enable novel membrane design.
不断加剧的全球水资源短缺需要高性能的海水淡化膜,这就需要对结构-性能-关系有深入的了解。在这项研究中,我们全面评估了最先进的纳滤(NF)膜中纳米多孔聚酰胺选择性层的离子化行为。在这些薄膜中,残留的羧酸和胺通过赋予亲水性和可离子化的部分来影响渗透性和选择性,这些部分可以排斥共离子。我们利用层状界面聚合来制备具有控制厚度的物理和化学性质相似的选择性层。然后,我们证明了 NF 聚酰胺薄膜中羧基的位置依赖的离子化。具体来说,只有中性 pH 下表面的羧基会发生离子化,而内部羧基的离子化需要 pH>9。相反,胺的离子化在整个膜中始终如一。第一性原理模拟表明,纳米受限水中的低介电常数导致了异常的羧基离子化行为。此外,我们报告称,内部羧基离子化可以将 NF 膜的水盐选择性提高四倍以上,这表明内部电荷密度可能是增强聚酰胺膜选择性的重要工具。我们的研究结果强调了纳米约束对膜传输性能的影响,并提供了对离子化的增强基本理解,这可能为新型膜设计提供依据。