Department of Chemistry, University of Utah , Salt Lake City, Utah 84112, United States.
Acc Chem Res. 2014 Feb 18;47(2):440-9. doi: 10.1021/ar400157w. Epub 2014 Jan 7.
Nanoporous membranes are important for the study of the transport of small molecules and macromolecules through confined spaces and in applications ranging from separation of biomacromolecules and pharmaceuticals to sensing and controlled release of drugs. For many of these applications, chemists need to gate the ionic and molecular flux through the nanopores, which in turn depends on the ability to control the nanopore geometry and surface chemistry. Most commonly used nanoporous membrane materials are based on polymers. However, the nanostructure of polymeric membranes is not well-defined, and their surface is hard to modify. Inorganic nanoporous materials are attractive alternatives for polymers in the preparation of nanoporous membranes. In this Account, we describe the preparation and surface modification of inorganic nanoporous films and membranes self-assembled from silica colloidal spheres. These spheres form colloidal crystals with close-packed face centered cubic lattices upon vertical deposition from colloidal solutions. Silica colloidal crystals contain ordered arrays of interconnected three dimensional voids, which function as nanopores. We can prepare silica colloidal crystals as supported thin films on various flat solid surfaces or obtain free-standing silica colloidal membranes by sintering the colloidal crystals above 1000 °C. Unmodified silica colloidal membranes are capable of size-selective separation of macromolecules, and we can surface-modify them in a well-defined and controlled manner with small molecules and polymers. For the surface modification with small molecules, we use silanol chemistry. We grow polymer brushes with narrow molecular weight distribution and controlled length on the colloidal nanopore surface using atom transfer radical polymerization or ring-opening polymerization. We can control the flux in the resulting surface-modified nanoporous films and membranes by pH and ionic strength, temperature, light, and small molecule binding. When we modify the surface of the colloidal nanopores with ionizable moieties, they can generate an electric field inside the nanopores, which repels ions of the same charge and attracts ions of the opposite charge. This allows us to electrostatically gate the ionic flux through colloidal nanopores, controlled by pH and ionic strength of the solution when surface amines or sulfonic acids are present or by irradiation with light in the case of surface spiropyran moieties. When we modify the surface of the colloidal nanopores with chiral moieties capable of stereoselective binding of enantiomers, we generate colloidal films with chiral permselectivity. By filling the colloidal nanopores with polymer brushes attached to the pore surface, we can control the ionic flux through the corresponding films and membranes electrostatically using reversibly ionizable polymer brushes. By filling the colloidal nanopores with polymer brushes whose conformation reversibly changes in response to pH, ionic strength, temperature, or small molecule binding, we can control the molecular flux sterically. There are various potential applications for surface-modified silica colloidal films and membranes. Due to their ordered nanoporous structure and mechanical durability, they are beneficial in nanofluidics, nanofiltration, separations, and fuel cells and as catalyst supports. Reversible gating of flux by external stimuli may be useful in drug release, in size-, charge-, and structure-selective separations, and in microfluidic and sensing devices.
纳米多孔膜在小分子和生物大分子在受限空间中的传输研究以及从生物大分子和药物的分离到药物的传感和控制释放等应用中都非常重要。对于许多这些应用,化学家需要通过纳米孔来控制离子和分子的通量,而这又取决于控制纳米孔几何形状和表面化学的能力。最常用的纳米多孔膜材料基于聚合物。然而,聚合物膜的纳米结构定义不明确,其表面难以修饰。无机纳米多孔材料是聚合物在制备纳米多孔膜中的替代品。在本述评中,我们描述了由二氧化硅胶体球自组装而成的无机纳米多孔薄膜和膜的制备和表面修饰。这些球体在胶体溶液中垂直沉积时形成具有密堆积面心立方晶格的胶体晶体。二氧化硅胶体晶体包含相互连接的三维空隙的有序排列,这些空隙充当纳米孔。我们可以将二氧化硅胶体晶体作为各种平整固体表面上的负载型薄膜来制备,或者通过将胶体晶体在 1000°C 以上烧结来获得自由-standing 二氧化硅胶体膜。未经修饰的二氧化硅胶体膜能够对大分子进行尺寸选择性分离,并且我们可以使用小分子和聚合物以明确定义和可控的方式对其进行表面修饰。对于小分子的表面修饰,我们使用硅醇化学。我们使用原子转移自由基聚合或开环聚合在胶体纳米孔表面上生长具有窄分子量分布和受控长度的聚合物刷。我们可以通过 pH 值和离子强度、温度、光和小分子结合来控制所得表面修饰的纳米多孔薄膜和膜中的通量。当我们用可离子化的部分修饰胶体纳米孔的表面时,它们可以在纳米孔内产生电场,排斥相同电荷的离子并吸引相反电荷的离子。这使我们能够通过存在表面伯胺或磺酸时溶液的 pH 值和离子强度或表面螺吡喃部分的光照来静电控制通过胶体纳米孔的离子通量。当我们用能够对对映异构体进行立体选择性结合的手性部分修饰胶体纳米孔的表面时,我们会生成具有手性选择性的胶体膜。通过用附着在孔表面上的聚合物刷填充胶体纳米孔,我们可以使用可逆可离子化聚合物刷静电控制相应的薄膜和膜中的离子通量。通过用响应 pH 值、离子强度、温度或小分子结合而可逆改变构象的聚合物刷填充胶体纳米孔,我们可以通过空间位阻来控制分子通量。表面修饰的二氧化硅胶体薄膜和膜具有各种潜在的应用。由于其有序的纳米多孔结构和机械耐久性,它们在纳流控、纳滤、分离和燃料电池以及作为催化剂载体方面具有优势。通过外部刺激可逆地控制通量可能在药物释放、尺寸、电荷和结构选择性分离以及微流控和传感装置中有用。