Suppr超能文献

外显子组测序鉴定出免疫性血栓性血小板减少性紫癜患者糖基化和 ANKRD36C 异常。

Exome Sequencing Identifies Abnormalities in Glycosylation and ANKRD36C in Patients with Immune-Mediated Thrombotic Thrombocytopenic Purpura.

机构信息

Division of Genomic Diagnostics and Bioinformatics, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, United States.

Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States.

出版信息

Thromb Haemost. 2021 Apr;121(4):506-517. doi: 10.1055/s-0040-1719030. Epub 2020 Nov 12.

Abstract

BACKGROUND

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a potentially fatal blood disorder, resulting from autoantibodies against ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13). However, the mechanism underlying anti-ADAMTS13 autoantibody formation is not known, nor it is known how genetic aberrations contribute to the pathogenesis of iTTP.

METHODS

Here we performed whole exome sequencing (WES) of DNA samples from 40 adult patients with iTTP and 15 local healthy subjects with no history of iTTP and other hematological disorders.

RESULTS

WES revealed variations in the genes involved in protein glycosylation, including O-linked glycosylation, to be a major pathway affected in patients with iTTP. Moreover, variations in the gene family, particularly and its paralogs, were also more prevalent in patients with iTTP than in the healthy controls. The ANKRD36 family of proteins have been implicated in inflammation. Mass spectrometry revealed a dramatic alternation in plasma glycoprotein profile in patients with iTTP compared with the healthy controls.

CONCLUSION

Altered glycosylation may affect the disease onset and progression in various ways: it may predispose patients to produce ADAMTS13 autoantibodies or affect their binding properties; it may also alter clearance kinetics of hemostatic and inflammatory proteins. Together, our findings provide novel insights into plausible mechanisms underlying the pathogenesis of iTTP.

摘要

背景

免疫介导的血栓性血小板减少性紫癜(iTTP)是一种潜在致命的血液疾病,由针对 ADAMTS13(一种具有血小板反应蛋白 1 型基序的解整合素金属蛋白酶 13)的自身抗体引起。然而,抗 ADAMTS13 自身抗体形成的机制尚不清楚,也不知道遗传异常如何导致 iTTP 的发病机制。

方法

我们对 40 名成年 iTTP 患者和 15 名无 iTTP 和其他血液系统疾病病史的当地健康受试者的 DNA 样本进行了全外显子组测序(WES)。

结果

WES 显示,涉及蛋白质糖基化的基因(包括 O-连接糖基化)的变异是 iTTP 患者受影响的主要途径。此外,基因家族的变异,特别是 和其旁系同源物,在 iTTP 患者中比在健康对照组中更为常见。ANKRD36 蛋白家族与炎症有关。质谱分析显示,与健康对照组相比,iTTP 患者的血浆糖蛋白谱发生了明显改变。

结论

糖基化的改变可能以多种方式影响疾病的发生和进展:它可能使患者易产生 ADAMTS13 自身抗体,或影响其结合特性;也可能改变止血和炎症蛋白的清除动力学。总之,我们的研究结果为 iTTP 发病机制的潜在机制提供了新的见解。

相似文献

2
Immune thrombotic thrombocytopenic purpura: pathogenesis and novel therapies: a narrative review.
Ann Blood. 2023 Sep 30;8. doi: 10.21037/aob-22-29. Epub 2023 Jan 6.
7
Comprehensive mutational profiling identifies new driver events in cutaneous leiomyosarcoma.
Br J Dermatol. 2025 Jan 24;192(2):335-343. doi: 10.1093/bjd/ljae386.
8
Recombinant ADAMTS13 for Immune Thrombotic Thrombocytopenic Purpura.
N Engl J Med. 2024 May 9;390(18):1690-1698. doi: 10.1056/NEJMoa2402567.
9
Mechanistic insight into multiple antibody binding to ADAMTS13 in immune thrombotic thrombocytopenic purpura.
Res Pract Thromb Haemost. 2024 Oct 23;8(7):102603. doi: 10.1016/j.rpth.2024.102603. eCollection 2024 Oct.
10
Determinants and clinical impact of time to plasma exchange in patients with immune thrombotic thrombocytopenic purpura.
Transfusion. 2025 Jul;65(7):1242-1250. doi: 10.1111/trf.18291. Epub 2025 May 26.

引用本文的文献

1
Genetic variants contribute to modulation of renal function in patients with immune thrombotic thrombocytopenic purpura.
Blood Vessel Thromb Hemost. 2024 Jul 16;1(4):100019. doi: 10.1016/j.bvth.2024.100019. eCollection 2024 Dec.
2
Modeling ANKRD26 5'-UTR mutation-related thrombocytopenia.
Dis Model Mech. 2025 Apr 1;18(4). doi: 10.1242/dmm.052222. Epub 2025 Apr 28.
3
Animal models for thrombotic thrombocytopenic purpura: a narrative review.
Ann Blood. 2023 Sep 30;8. doi: 10.21037/aob-22-18. Epub 2022 Nov 16.
6
A Comprehensive Weighted Gene Co-expression Network Analysis Uncovers Potential Targets in Diabetic Kidney Disease.
J Transl Int Med. 2023 Jan 13;10(4):359-368. doi: 10.2478/jtim-2022-0053. eCollection 2022 Dec.

本文引用的文献

1
Aberrant glycosylation in autoimmune disease.
Clin Exp Rheumatol. 2020 Jul-Aug;38(4):767-775. Epub 2019 Oct 22.
2
Silencing circular RNA circANKRD36 remits lipopolysaccharide-induced inflammatory damage by regulating microRNA-15/MyD88.
J Cell Biochem. 2020 Mar;121(3):2704-2712. doi: 10.1002/jcb.29490. Epub 2019 Nov 6.
3
Interactome of the Autoimmune Risk Protein ANKRD55.
Front Immunol. 2019 Sep 18;10:2067. doi: 10.3389/fimmu.2019.02067. eCollection 2019.
4
The International Hereditary Thrombotic Thrombocytopenic Purpura Registry: key findings at enrollment until 2017.
Haematologica. 2019 Oct;104(10):2107-2115. doi: 10.3324/haematol.2019.216796. Epub 2019 Feb 21.
5
Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus.
Int J Mol Med. 2018 Oct;42(4):1865-1874. doi: 10.3892/ijmm.2018.3783. Epub 2018 Jul 18.
6
Recurrent homozygous deletion of DROSHA and microduplication of PDE4DIP in pineoblastoma.
Nat Commun. 2018 Jul 20;9(1):2868. doi: 10.1038/s41467-018-05029-3.
7
S100A8/A9 in Inflammation.
Front Immunol. 2018 Jun 11;9:1298. doi: 10.3389/fimmu.2018.01298. eCollection 2018.
9
The Reactome Pathway Knowledgebase.
Nucleic Acids Res. 2018 Jan 4;46(D1):D649-D655. doi: 10.1093/nar/gkx1132.
10
Genetic effects on gene expression across human tissues.
Nature. 2017 Oct 11;550(7675):204-213. doi: 10.1038/nature24277.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验