Suppr超能文献

细胞因子和 T 细胞在重症肌无力发病机制中的作用。

Roles of cytokines and T cells in the pathogenesis of myasthenia gravis.

机构信息

Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.

Department of Neurology, Keio University School of Medicine, Tokyo, Japan.

出版信息

Clin Exp Immunol. 2021 Mar;203(3):366-374. doi: 10.1111/cei.13546. Epub 2020 Dec 3.

Abstract

Myasthenia gravis (MG) is characterized by muscle weakness and fatigue caused by the presence of autoantibodies against the acetylcholine receptor (AChR) or the muscle-specific tyrosine kinase (MuSK). Activated T, B and plasma cells, as well as cytokines, play important roles in the production of pathogenic autoantibodies and the induction of inflammation at the neuromuscular junction in MG. Many studies have focused on the role of cytokines and lymphocytes in anti-AChR antibody-positive MG. Chronic inflammation mediated by T helper type 17 (Th17) cells, the promotion of autoantibody production from B cells and plasma cells by follicular Th (Tfh) cells and the activation of the immune response by dysfunction of regulatory T (T ) cells may contribute to the exacerbation of the MG pathogenesis. In fact, an increased number of Th17 cells and Tfh cells and dysfunction of T cells have been reported in patients with anti-AChR antibody-positive MG; moreover, the number of these cells was correlated with clinical parameters in patients with MG. Regarding cytokines, interleukin (IL)-17; a Th17-related cytokine, IL-21 (a Tfh-related cytokine), the B-cell-activating factor (BAFF; a B cell-related cytokine) and a proliferation-inducing ligand (APRIL; a B cell-related cytokine) have been reported to be up-regulated and associated with clinical parameters of MG. This review focuses on the current understanding of the involvement of cytokines and lymphocytes in the immunological pathogenesis of MG, which may lead to the development of novel therapies for this disease in the near future.

摘要

重症肌无力(MG)的特征是肌肉无力和疲劳,这是由于存在针对乙酰胆碱受体(AChR)或肌肉特异性酪氨酸激酶(MuSK)的自身抗体引起的。活化的 T、B 和浆细胞以及细胞因子在致病性自身抗体的产生和 MG 神经肌肉接头的炎症诱导中发挥重要作用。许多研究都集中在细胞因子和淋巴细胞在抗 AChR 抗体阳性 MG 中的作用。辅助性 T 细胞 17(Th17)细胞介导的慢性炎症、滤泡辅助性 T(Tfh)细胞促进 B 细胞和浆细胞产生自身抗体以及调节性 T(T)细胞功能障碍激活免疫反应可能导致 MG 发病机制的恶化。事实上,在抗 AChR 抗体阳性 MG 患者中已经报道了 Th17 细胞和 Tfh 细胞数量增加和 T 细胞功能障碍;此外,这些细胞的数量与 MG 患者的临床参数相关。关于细胞因子,白细胞介素(IL)-17;Th17 相关细胞因子、IL-21(Tfh 相关细胞因子)、B 细胞激活因子(BAFF;B 细胞相关细胞因子)和增殖诱导配体(APRIL;B 细胞相关细胞因子)已被报道上调,并与 MG 的临床参数相关。这篇综述重点介绍了细胞因子和淋巴细胞在 MG 免疫发病机制中的作用的最新认识,这可能会导致在不久的将来为这种疾病开发新的治疗方法。

相似文献

1
Roles of cytokines and T cells in the pathogenesis of myasthenia gravis.
Clin Exp Immunol. 2021 Mar;203(3):366-374. doi: 10.1111/cei.13546. Epub 2020 Dec 3.
2
Tacrolimus inhibits Th1 and Th17 responses in MuSK-antibody positive myasthenia gravis patients.
Exp Neurol. 2019 Feb;312:43-50. doi: 10.1016/j.expneurol.2018.11.006. Epub 2018 Nov 22.
3
Differential Cytokine Changes in Patients with Myasthenia Gravis with Antibodies against AChR and MuSK.
PLoS One. 2015 Apr 20;10(4):e0123546. doi: 10.1371/journal.pone.0123546. eCollection 2015.
5
Characterization of CD4 and CD8 T cell responses in MuSK myasthenia gravis.
J Autoimmun. 2014 Aug;52:130-8. doi: 10.1016/j.jaut.2013.12.005. Epub 2013 Dec 28.
6
An imbalance between regulatory T cells and T helper 17 cells in acetylcholine receptor-positive myasthenia gravis patients.
Ann N Y Acad Sci. 2018 Feb;1413(1):154-162. doi: 10.1111/nyas.13591. Epub 2018 Jan 24.
8
Muscle-Specific Receptor Tyrosine Kinase (MuSK) Myasthenia Gravis.
Curr Neurol Neurosci Rep. 2016 Jul;16(7):61. doi: 10.1007/s11910-016-0668-z.
9
Antibody effector mechanisms in myasthenia gravis-pathogenesis at the neuromuscular junction.
Autoimmunity. 2010 Aug;43(5-6):353-70. doi: 10.3109/08916930903555943.

引用本文的文献

3
Serum cytokine profiles in patients with myasthenia gravis.
Front Neurol. 2025 Jul 3;16:1611673. doi: 10.3389/fneur.2025.1611673. eCollection 2025.
4
Thymic hyperplasia in myasthenia gravis: a narrative review.
Mediastinum. 2025 Jun 25;9:17. doi: 10.21037/med-25-12. eCollection 2025.
5
Impact of body mass index on clinical presentation and prognosis in myasthenia gravis.
Orphanet J Rare Dis. 2025 Jul 14;20(1):361. doi: 10.1186/s13023-025-03902-1.
7
The role of fatty acid metabolism on B cells and B cell-related autoimmune diseases.
Inflamm Res. 2025 Apr 29;74(1):75. doi: 10.1007/s00011-025-02042-3.
8
Serum Inflammatory Factors Levels and Risk of Myasthenia Gravis: A Bidirectional Mendelian Randomization Study.
Mol Neurobiol. 2025 Jun;62(6):7738-7746. doi: 10.1007/s12035-025-04744-5. Epub 2025 Feb 11.
9
Nomogram for predicting pregnancy-related relapse of myasthenia gravis.
Orphanet J Rare Dis. 2024 Dec 1;19(1):452. doi: 10.1186/s13023-024-03466-6.

本文引用的文献

2
IL-37 Represses the Autoimmunity in Myasthenia Gravis via Directly Targeting Follicular Th and B Cells.
J Immunol. 2020 Apr 1;204(7):1736-1745. doi: 10.4049/jimmunol.1901176. Epub 2020 Feb 28.
3
Rituximab in AChR subtype of myasthenia gravis: systematic review.
J Neurol Neurosurg Psychiatry. 2020 Apr;91(4):392-395. doi: 10.1136/jnnp-2019-322606. Epub 2020 Feb 25.
4
Comparison of peripheral blood B cell subset ratios and B cell-related cytokine levels between ocular and generalized myasthenia gravis.
Int Immunopharmacol. 2020 Mar;80:106130. doi: 10.1016/j.intimp.2019.106130. Epub 2020 Jan 21.
5
B Cell Immunophenotyping and Transcriptional Profiles of Memory B Cells in Patients with Myasthenia Gravis.
Exp Neurobiol. 2019 Dec 31;28(6):720-726. doi: 10.5607/en.2019.28.6.720.
6
Effect of low-dose rituximab treatment on T- and B-cell lymphocyte imbalance in refractory myasthenia gravis.
J Neuroimmunol. 2019 Jul 15;332:216-223. doi: 10.1016/j.jneuroim.2019.05.004. Epub 2019 May 9.
8
Il-23/Th17 cell pathway: A promising target to alleviate thymic inflammation maintenance in myasthenia gravis.
J Autoimmun. 2019 Mar;98:59-73. doi: 10.1016/j.jaut.2018.11.005. Epub 2018 Dec 18.
9
Immunotherapy in myasthenia gravis in the era of biologics.
Nat Rev Neurol. 2019 Feb;15(2):113-124. doi: 10.1038/s41582-018-0110-z.
10
Regulatory B cells in myasthenia gravis are differentially affected by therapies.
Ann Clin Transl Neurol. 2018 Sep 22;5(11):1408-1414. doi: 10.1002/acn3.645. eCollection 2018 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验