Suppr超能文献

比较基于机器和深度学习的算法,以功能磁共振成像预测精神病的临床改善。

Comparing machine and deep learning-based algorithms for prediction of clinical improvement in psychosis with functional magnetic resonance imaging.

机构信息

Department of Psychiatry, University of California, Davis, California, USA.

Department of Computer Science, University of California, Davis, California, USA.

出版信息

Hum Brain Mapp. 2021 Mar;42(4):1197-1205. doi: 10.1002/hbm.25286. Epub 2020 Nov 13.

Abstract

Previous work using logistic regression suggests that cognitive control-related frontoparietal activation in early psychosis can predict symptomatic improvement after 1 year of coordinated specialty care with 66% accuracy. Here, we evaluated the ability of six machine learning (ML) algorithms and deep learning (DL) to predict "Improver" status (>20% improvement on Brief Psychiatric Rating Scale [BPRS] total score at 1-year follow-up vs. baseline) and continuous change in BPRS score using the same functional magnetic resonance imaging-based features (frontoparietal activations during the AX-continuous performance task) in the same sample (individuals with either schizophrenia (n = 65, 49M/16F, mean age 20.8 years) or Type I bipolar disorder (n = 17, 9M/8F, mean age 21.6 years)). 138 healthy controls were included as a reference group. "Shallow" ML methods included Naive Bayes, support vector machine, K Star, AdaBoost, J48 decision tree, and random forest. DL included an explainable artificial intelligence (XAI) procedure for understanding results. The best overall performances (70% accuracy for the binary outcome and root mean square error = 9.47 for the continuous outcome) were achieved using DL. XAI revealed left DLPFC activation was the strongest feature used to make binary classification decisions, with a classification activation threshold (adjusted beta = .017) intermediate to the healthy control mean (adjusted beta = .15, 95% CI = -0.02 to 0.31) and patient mean (adjusted beta = -.13, 95% CI = -0.37 to 0.11). Our results suggest DL is more powerful than shallow ML methods for predicting symptomatic improvement. The left DLPFC may be a functional target for future biomarker development as its activation was particularly important for predicting improvement.

摘要

先前使用逻辑回归的研究表明,早期精神病患者的认知控制相关的额顶叶激活可以预测经过 1 年协调专业护理后症状改善的情况,准确率为 66%。在这里,我们使用相同的功能磁共振成像(fMRI)特征(AX 连续执行任务期间的额顶叶激活)评估了六种机器学习(ML)算法和深度学习(DL)预测“改善者”状态(1 年随访时简明精神病评定量表[BPRS]总分改善>20%,与基线相比)和 BPRS 评分连续变化的能力,同一样本中包含精神分裂症(n=65,49M/16F,平均年龄 20.8 岁)或 I 型双相情感障碍(n=17,9M/8F,平均年龄 21.6 岁)的个体。纳入 138 名健康对照作为参考组。“浅层”ML 方法包括朴素贝叶斯、支持向量机、K 星、自适应增强、J48 决策树和随机森林。DL 包括用于理解结果的可解释人工智能(XAI)程序。使用 DL 实现了最佳的总体性能(二元结果的准确率为 70%,连续结果的均方根误差=9.47)。XAI 显示左侧背外侧前额叶皮层的激活是进行二元分类决策的最强特征,分类激活阈值(调整后的β=0.017)介于健康对照组均值(调整后的β=0.15,95%CI=-0.02 至 0.31)和患者均值(调整后的β=-0.13,95%CI=-0.37 至 0.11)之间。我们的研究结果表明,DL 比浅层 ML 方法更适合预测症状改善。左侧背外侧前额叶皮层可能是未来生物标志物开发的功能靶点,因为其激活对于预测改善尤为重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6a3/7856652/bb6d50a282c9/HBM-42-1197-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验