Suppr超能文献

用于乙烷选择性高效分离的共价有机框架中孔道的微观调控

Microregulation of Pore Channels in Covalent-Organic Frameworks Used for the Selective and Efficient Separation of Ethane.

作者信息

He Chaohui, Wang Yong, Chen Yang, Wang Xiaoqing, Yang Jiangfeng, Li Libo, Li Jinping

机构信息

College of Chemistry and Chemical Engineering, Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan University of Technology, Taiyuan, 030024 Shanxi, P. R. China.

Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024 Shanxi, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2020 Nov 25;12(47):52819-52825. doi: 10.1021/acsami.0c16575. Epub 2020 Nov 13.

Abstract

The removal of low content of ethane (CH) from ethylene (CH) using CH-selective adsorbents to reduce the energy consumption in the petrochemical industry is one of the meaningful and challenging tasks in separation research. Herein, we report for the first time the systematic research of covalent-organic frameworks (COFs) as a platform used for the separation of light hydrocarbons based on their specific topology. Benefiting from its richly distributed weakly polar surface and suitable pore cavities, COF-1 exhibits the highest adsorption selectivity (1.92 at 298 K and 1 bar) for the CH/CH mixture among the COFs studied. Density functional theory calculations clearly revealed that COF-1 can exhibit multiple C-H···π interactions with ethane in its suitable pore environment and thus preferentially binds to ethane over ethylene. Finally, breakthrough experiments proved that COF-1 may be regarded as an effective porous adsorbent with polymer-grade CH obtained directly from CH/CH mixtures at 298 K and 1 bar.

摘要

利用CH选择性吸附剂从乙烯(CH)中脱除低含量乙烷(CH)以降低石化行业的能源消耗,是分离研究中一项有意义且具有挑战性的任务。在此,我们首次报道了对共价有机框架(COF)作为基于其特定拓扑结构用于分离轻质烃类的平台的系统研究。得益于其分布丰富的弱极性表面和合适的孔腔,在研究的COF中,COF-1对CH/CH混合物表现出最高的吸附选择性(298 K和1 bar下为1.92)。密度泛函理论计算清楚地表明,COF-1在其合适的孔环境中能与乙烷表现出多种C-H···π相互作用,因此相对于乙烯更优先结合乙烷。最后,突破实验证明,COF-1可被视为一种有效的多孔吸附剂,能在298 K和1 bar下直接从CH/CH混合物中获得聚合物级的CH。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验