Bardozzo Francesco, Lió Pietro, Tagliaferri Roberto
NeuRoNe Lab, DISA-MIS, University of Salerno, Fisciano 84084, Italy.
Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, UK.
Bioinformatics. 2021 Jun 16;37(10):1411-1419. doi: 10.1093/bioinformatics/btaa966.
One of the branches of Systems Biology is focused on a deep understanding of underlying regulatory networks through the analysis of the biomolecules oscillations and their interplay. Synthetic Biology exploits gene or/and protein regulatory networks towards the design of oscillatory networks for producing useful compounds. Therefore, at different levels of application and for different purposes, the study of biomolecular oscillations can lead to different clues about the mechanisms underlying living cells. It is known that network-level interactions involve more than one type of biomolecule as well as biological processes operating at multiple omic levels. Combining network/pathway-level information with genetic information it is possible to describe well-understood or unknown bacterial mechanisms and organism-specific dynamics.
Following the methodologies used in signal processing and communication engineering, a methodology is introduced to identify and quantify the extent of multi-omic oscillations. These are due to the process of multi-omic integration and depend on the gene positions on the chromosome. Ad hoc signal metrics are designed to allow further biotechnological explanations and provide important clues about the oscillatory nature of the pathways and their regulatory circuits. Our algorithms designed for the analysis of multi-omic signals are tested and validated on 11 different bacteria for thousands of multi-omic signals perturbed at the network level by different experimental conditions. Information on the order of genes, codon usage, gene expression and protein molecular weight is integrated at three different functional levels. Oscillations show interesting evidence that network-level multi-omic signals present a synchronized response to perturbations and evolutionary relations along taxa.
The algorithms, the code (in language R), the tool, the pipeline and the whole dataset of multi-omic signal metrics are available at: https://github.com/lodeguns/Multi-omicSignals.
Supplementary data are available at Bioinformatics online.
系统生物学的一个分支专注于通过分析生物分子振荡及其相互作用来深入理解潜在的调控网络。合成生物学利用基因或/和蛋白质调控网络来设计振荡网络以生产有用的化合物。因此,在不同的应用层面和出于不同的目的,对生物分子振荡的研究可以揭示有关活细胞潜在机制的不同线索。众所周知,网络层面的相互作用涉及不止一种类型的生物分子以及在多个组学层面上运行的生物过程。将网络/通路层面的信息与遗传信息相结合,就有可能描述已被充分理解或未知的细菌机制以及特定生物体的动态。
遵循信号处理和通信工程中使用的方法,引入了一种方法来识别和量化多组学振荡的程度。这些振荡是由于多组学整合过程引起的,并且取决于染色体上的基因位置。设计了特殊的信号指标以进行进一步的生物技术解释,并提供有关通路及其调控回路振荡性质的重要线索。我们设计用于分析多组学信号的算法在11种不同的细菌上针对数千个在网络层面受到不同实验条件干扰的多组学信号进行了测试和验证。基因顺序、密码子使用、基因表达和蛋白质分子量的信息在三个不同的功能层面上进行了整合。振荡显示出有趣的证据,表明网络层面的多组学信号对扰动呈现同步响应以及沿分类群的进化关系。
算法、代码(用R语言编写)、工具、流程以及多组学信号指标的整个数据集可在以下网址获取:https://github.com/lodeguns/Multi-omicSignals。
补充数据可在《生物信息学》在线版获取。