Suppr超能文献

扩展人类连接组计划的年龄范围:生命周期发展和衰老项目的成像协议。

Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects.

机构信息

Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.

Department of Psychology, Harvard University, Cambridge, MA, USA; Center for Brain Science, Harvard University, Cambridge, MA, USA.

出版信息

Neuroimage. 2018 Dec;183:972-984. doi: 10.1016/j.neuroimage.2018.09.060. Epub 2018 Sep 24.

Abstract

The Human Connectome Projects in Development (HCP-D) and Aging (HCP-A) are two large-scale brain imaging studies that will extend the recently completed HCP Young-Adult (HCP-YA) project to nearly the full lifespan, collecting structural, resting-state fMRI, task-fMRI, diffusion, and perfusion MRI in participants from 5 to 100+ years of age. HCP-D is enrolling 1300+ healthy children, adolescents, and young adults (ages 5-21), and HCP-A is enrolling 1200+ healthy adults (ages 36-100+), with each study collecting longitudinal data in a subset of individuals at particular age ranges. The imaging protocols of the HCP-D and HCP-A studies are very similar, differing primarily in the selection of different task-fMRI paradigms. We strove to harmonize the imaging protocol to the greatest extent feasible with the completed HCP-YA (1200+ participants, aged 22-35), but some imaging-related changes were motivated or necessitated by hardware changes, the need to reduce the total amount of scanning per participant, and/or the additional challenges of working with young and elderly populations. Here, we provide an overview of the common HCP-D/A imaging protocol including data and rationales for protocol decisions and changes relative to HCP-YA. The result will be a large, rich, multi-modal, and freely available set of consistently acquired data for use by the scientific community to investigate and define normative developmental and aging related changes in the healthy human brain.

摘要

正在开发的人类连接组计划(HCP-D)和老龄化(HCP-A)是两项大型脑成像研究,它们将把最近完成的 HCP 青年(HCP-YA)项目扩展到几乎整个生命周期,从 5 岁到 100 岁以上的参与者中收集结构、静息态 fMRI、任务 fMRI、扩散和灌注 MRI。HCP-D 正在招募 1300 多名健康的儿童、青少年和年轻人(年龄 5-21 岁),HCP-A 正在招募 1200 多名健康成年人(年龄 36-100 岁),每个研究都在特定年龄范围内的特定个体中收集纵向数据。HCP-D 和 HCP-A 研究的成像方案非常相似,主要区别在于选择不同的任务 fMRI 范式。我们努力使成像方案与已完成的 HCP-YA(1200 多名参与者,年龄 22-35 岁)最大程度地协调一致,但由于硬件变化、减少每个参与者的扫描总量的需要,以及/或与年轻人和老年人合作的额外挑战,一些与成像相关的变化是有动机的或必要的。在这里,我们提供了一个常见的 HCP-D/A 成像方案概述,包括数据和协议决策的理由以及相对于 HCP-YA 的变化。其结果将是一个大型、丰富、多模态且免费提供的一致获取数据集,供科学界用于研究和定义健康人类大脑中正常的发育和衰老相关变化。

相似文献

1
Extending the Human Connectome Project across ages: Imaging protocols for the Lifespan Development and Aging projects.
Neuroimage. 2018 Dec;183:972-984. doi: 10.1016/j.neuroimage.2018.09.060. Epub 2018 Sep 24.
2
The Lifespan Human Connectome Project in Aging: An overview.
Neuroimage. 2019 Jan 15;185:335-348. doi: 10.1016/j.neuroimage.2018.10.009. Epub 2018 Oct 15.
3
4
The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5-21 year olds.
Neuroimage. 2018 Dec;183:456-468. doi: 10.1016/j.neuroimage.2018.08.050. Epub 2018 Aug 22.
5
Negative association between neurovascular coupling and cortical gray matter volume during the lifespan.
J Neurophysiol. 2024 Apr 1;131(4):778-784. doi: 10.1152/jn.00005.2024. Epub 2024 Mar 13.
6
The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development.
Neuroimage. 2019 Jan 15;185:891-905. doi: 10.1016/j.neuroimage.2018.03.049. Epub 2018 Mar 22.
10
Youth Screen Media Activity Patterns and Associations With Behavioral Developmental Measures and Resting-state Brain Functional Connectivity.
J Am Acad Child Adolesc Psychiatry. 2023 Sep;62(9):1051-1063. doi: 10.1016/j.jaac.2023.02.014. Epub 2023 Mar 22.

引用本文的文献

1
The Cognitive-Affective Social Processing and Emotion Regulation (CASPER) model.
Neuropsychopharmacology. 2025 Sep 4. doi: 10.1038/s41386-025-02224-x.
4
Functional MRI signatures of autonomic physiology in aging.
Commun Biol. 2025 Aug 27;8(1):1287. doi: 10.1038/s42003-025-08703-7.
5
Evidence for a compensatory relationship between left- and right-lateralized brain networks.
Imaging Neurosci (Camb). 2025 Jan 29;3. doi: 10.1162/imag_a_00437. eCollection 2025.
6
Perivascular and parenchymal fluid characteristics are related to age and cognitive performance across the lifespan.
Imaging Neurosci (Camb). 2025 Apr 29;3. doi: 10.1162/imag_a_00549. eCollection 2025.
7
Brain age identification from diffusion MRI synergistically predicts neurodegenerative disease.
Imaging Neurosci (Camb). 2025 Apr 24;3. doi: 10.1162/imag_a_00552. eCollection 2025.
8
Denoising diffusion MRI: Considerations and implications for analysis.
Imaging Neurosci (Camb). 2024 Jan 9;2. doi: 10.1162/imag_a_00060. eCollection 2024.
9
Multilayer meta-matching: Translating phenotypic prediction models from multiple datasets to small data.
Imaging Neurosci (Camb). 2024 Jul 17;2. doi: 10.1162/imag_a_00233. eCollection 2024.
10
Detection of respiration-induced field modulations in fMRI: A concurrent and navigator-free approach.
Imaging Neurosci (Camb). 2024 Feb 12;2. doi: 10.1162/imag_a_00091. eCollection 2024.

本文引用的文献

1
The Lifespan Human Connectome Project in Aging: An overview.
Neuroimage. 2019 Jan 15;185:335-348. doi: 10.1016/j.neuroimage.2018.10.009. Epub 2018 Oct 15.
2
The Lifespan Human Connectome Project in Development: A large-scale study of brain connectivity development in 5-21 year olds.
Neuroimage. 2018 Dec;183:456-468. doi: 10.1016/j.neuroimage.2018.08.050. Epub 2018 Aug 22.
3
Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data.
Neuroimage. 2018 Nov 1;181:692-717. doi: 10.1016/j.neuroimage.2018.04.076. Epub 2018 Aug 2.
4
Statistical Challenges in "Big Data" Human Neuroimaging.
Neuron. 2018 Jan 17;97(2):263-268. doi: 10.1016/j.neuron.2017.12.018.
5
Susceptibility-induced distortion that varies due to motion: Correction in diffusion MR without acquiring additional data.
Neuroimage. 2018 May 1;171:277-295. doi: 10.1016/j.neuroimage.2017.12.040. Epub 2017 Dec 24.
6
Multimodal surface matching with higher-order smoothness constraints.
Neuroimage. 2018 Feb 15;167:453-465. doi: 10.1016/j.neuroimage.2017.10.037. Epub 2017 Oct 31.
8
Real-time motion analytics during brain MRI improve data quality and reduce costs.
Neuroimage. 2017 Nov 1;161:80-93. doi: 10.1016/j.neuroimage.2017.08.025. Epub 2017 Aug 10.
9
Resting-state fMRI correlations: From link-wise unreliability to whole brain stability.
Neuroimage. 2017 Aug 15;157:250-262. doi: 10.1016/j.neuroimage.2017.06.006. Epub 2017 Jul 3.
10
Challenges in measuring individual differences in functional connectivity using fMRI: The case of healthy aging.
Hum Brain Mapp. 2017 Aug;38(8):4125-4156. doi: 10.1002/hbm.23653. Epub 2017 May 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验