Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.
Mol Ecol. 2021 Jul;30(13):3326-3339. doi: 10.1111/mec.15725. Epub 2020 Nov 28.
Environmental DNA (eDNA) metabarcoding is raising expectations for biomonitoring of organisms that have hitherto been neglected. To bypass current limitations in taxonomic assignments due to incomplete or erroneous reference databases, taxonomy-free approaches are proposed for biomonitoring at the level of operational taxonomic units (OTUs). This is challenging, because OTUs cannot be annotated and directly compared against classically derived taxonomic data. The application of good stringency treatments to infer the validity of OTUs and clear understanding of the consequences of such treatments is especially relevant for biodiversity assessments. We investigated how common practices of stringency filtering affect eDNA diversity estimates in the statistical framework of Hill numbers. We collected water eDNA samples at 61 sites across a 740-km river catchment, reflecting a spatially realistic scenario in biomonitoring. After bioinformatic processing of the data, we studied how different stringency treatments affect conclusions with respect to biodiversity at the catchment and site levels. The applied stringency treatments were based on the consistent appearance of OTUs across filter replicates, a relative abundance cut-off and rarefaction. We detected large differences in diversity estimates when accounting for presence/absence only, such that detected diversity at the catchment scale differed by an order of magnitude between the treatments. These differences disappeared when using stringency treatments with increasing weighting of the OTU abundances. Our study demonstrated the usefulness of Hill numbers for biodiversity analyses and comparisons of eDNA data sets that strongly differ in diversity. We recommend best practice for data stringency filtering for biomonitoring using eDNA.
环境 DNA (eDNA) 代谢组学为监测迄今为止被忽视的生物提供了新的期望。为了避免由于不完全或错误的参考数据库而导致的分类学分配当前的局限性,提出了无需分类的方法来进行生物监测,其水平为操作分类单元 (OTU)。这是具有挑战性的,因为 OTU 无法注释,并且不能直接与经典的分类数据进行比较。应用良好的严格性处理来推断 OTU 的有效性,并清楚地了解这种处理的后果,对于生物多样性评估尤为重要。我们研究了在 Hill 数的统计框架中,常见的严格性过滤实践如何影响 eDNA 多样性估计。我们在 740 公里的河流流域的 61 个地点收集了水样 eDNA 样本,反映了生物监测中的空间现实场景。在对数据进行生物信息学处理后,我们研究了不同的严格性处理如何影响流域和站点水平的生物多样性的结论。应用的严格性处理基于 OTU 在过滤器重复中的一致出现、相对丰度截止值和稀有度。仅考虑存在/不存在时,我们检测到多样性估计值存在很大差异,以至于在处理之间,流域尺度上检测到的多样性相差一个数量级。当使用增加 OTU 丰度权重的严格性处理时,这些差异消失了。我们的研究表明,Hill 数对于生物多样性分析和 eDNA 数据集的比较非常有用,这些数据集在多样性方面差异很大。我们建议在使用 eDNA 进行生物监测时,对数据严格性过滤的最佳实践。