Suppr超能文献

分析生物修复策略中微生物群落结构和功能以处理 1,4-二恶烷污染地下水。

Profiling microbial community structures and functions in bioremediation strategies for treating 1,4-dioxane-contaminated groundwater.

机构信息

Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, United States.

Arcadis North America, Highlands Ranch, CO 80129, United States.

出版信息

J Hazard Mater. 2021 Apr 15;408:124457. doi: 10.1016/j.jhazmat.2020.124457. Epub 2020 Nov 2.

Abstract

Microbial community compositions and functional profiles were analyzed in microcosms established using aquifer materials from a former automobile factory site, where 1,4-dioxane was identified as the primary contaminant of concern. Propane or oxygen biostimulation resulted in limited 1,4-dioxane degradation, which was markedly enhanced with the addition of nutrients, resulting in abundant Mycobacterium and Methyloversatilis taxa and high expressions of propane monooxygenase gene, prmA. In bioaugmented treatments, Pseudonocardia dioxanivorans CB1190 or Rhodococcus ruber ENV425 strains dominated immediately after augmentation and degraded 1,4-dioxane rapidly which was consistent with increased representation of xenobiotic and lipid metabolism-related functions. Although the bioaugmented microbes decreased due to insufficient growth substrates and microbial competition, they did continue to degrade 1,4-dioxane, presumably by indigenous propanotrophic and heterotrophic bacteria, inducing similar community structures across bioaugmentation conditions. In various treatments, functional redundancy acted as buffer capacity to ensure a stable microbiome, drove the restoration of the structure and microbial functions to original levels, and induced the decoupling between basic metabolic functions and taxonomy. The results of this study provided valuable information for design and decision-making for ex-situ bioreactors and in-situ bioremediation applications. A metagenomics-based understanding of the treatment process will enable efficient and accurate adjustments when encountering unexpected issues in bioremediation.

摘要

采用受污染的含水层材料构建微宇宙,分析了来自前汽车厂场地的微生物群落组成和功能特征,该场地中 1,4-二恶烷是主要关注的污染物。丙烷或氧气生物刺激导致 1,4-二恶烷的降解有限,而添加营养物质则显著增强了降解,导致大量分枝杆菌和 Methyloversatilis 类群的出现以及丙烷单加氧酶基因 prmA 的高表达。在生物强化处理中,Pseudonocardia dioxanivorans CB1190 或 Rhodococcus ruber ENV425 菌株在添加后立即占主导地位,并迅速降解 1,4-二恶烷,这与异生物质和脂质代谢相关功能的增加一致。尽管生物强化微生物由于生长基质不足和微生物竞争而减少,但它们确实继续降解 1,4-二恶烷,推测是由土著的丙烷营养型和异养细菌引起的,在不同的生物强化条件下诱导了相似的群落结构。在各种处理中,功能冗余充当缓冲能力,确保微生物组的稳定性,驱动结构和微生物功能恢复到原始水平,并导致基本代谢功能与分类学之间的解耦。本研究的结果为异位生物反应器和原位生物修复应用的设计和决策提供了有价值的信息。基于宏基因组学的处理过程理解将在生物修复中遇到意外问题时,能够实现高效和准确的调整。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验