Krogel Jaron T, Yuk Simuck F, Kent Paul R C, Cooper Valentino R
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
J Phys Chem A. 2020 Nov 25;124(47):9867-9876. doi: 10.1021/acs.jpca.0c05973. Epub 2020 Nov 15.
The van der Waals interaction is of foundational importance for a wide variety of physical systems. In particular, van der Waals forces lie at the heart of potential device technologies that may be realized from the functional organization of layered two-dimensional (2D) nanomaterials. For intermediate to large-scale applications modeling, van der Waals density functionals have become the choice for first-principles calculations. In particular, the vdW-DF family of functionals have provided a systematic approach to this theoretically challenging problem. While much progress has been made, there remains room for improvement in the microscopic description of vdW forces from these density functionals. In this work, we compute benchmark results for the binding energy and the electronic density response to binding in TiS via accurate diffusion quantum Monte Carlo calculations. We compare these benchmark data to results obtained from local, semilocal, and van der Waals functionals. In particular, we gauge the quality of the original vdW-DF/vdW-DF2 functionals, as well as updated variants such as vdW-DF-C09, vdW-DF-optB88, vdW-DF-optB86b, and vdW-DF2-B86R. We find a close relationship between the accuracy of predicted interlayer separation distances and binding energies for TiS, with the vdW-DF-optB88 functional performing very well in terms of both quantities. In general, the more recently developed functionals are systematic improvements over older ones. However, when considering the response of the electron density to binding, we find that local-density approximation (LDA) and PBEsol generally outperform the vdW-DF functionals in describing the interlayer charge accumulation with vdW-DF-C09 variants performing the best overall.
范德华相互作用对于多种物理系统具有基础性的重要意义。特别是,范德华力是潜在器件技术的核心,这些技术可能通过层状二维(2D)纳米材料的功能组织来实现。对于中大规模应用建模,范德华密度泛函已成为第一性原理计算的选择。特别是,vdW-DF系列泛函为这个理论上具有挑战性的问题提供了一种系统的方法。虽然已经取得了很大进展,但从这些密度泛函对范德华力的微观描述仍有改进空间。在这项工作中,我们通过精确的扩散量子蒙特卡罗计算,计算了TiS中结合能和结合时电子密度响应的基准结果。我们将这些基准数据与从局域、半局域和范德华泛函获得的结果进行比较。特别是,我们评估了原始vdW-DF/vdW-DF2泛函以及更新变体(如vdW-DF-C09、vdW-DF-optB88、vdW-DF-optB86b和vdW-DF2-B86R)的质量。我们发现TiS预测的层间分离距离和结合能的准确性之间存在密切关系,vdW-DF-optB88泛函在这两个量方面表现都非常出色。一般来说,较新开发的泛函是对旧泛函的系统性改进。然而,在考虑电子密度对结合的响应时,我们发现局域密度近似(LDA)和PBEsol在描述层间电荷积累方面通常优于vdW-DF泛函,其中vdW-DF-C09变体总体表现最佳。