Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal..
Sci Total Environ. 2021 Mar 20;761:143258. doi: 10.1016/j.scitotenv.2020.143258. Epub 2020 Nov 2.
Micropollutants have been linked to freshwater and human toxicity. Their occurrence in water bodies arises from different causes, including the discharge of effluents from conventional urban wastewater treatment plants, which are not designed for their removal. The addition of an advanced treatment process for this purpose will allow a toxicity reduction; however, such will also imply further resources and energy use resulting in other environmental impacts. Energy use is a particularly relevant hotspot of the environmental impacts associated with advanced treatments; therefore, solar-based treatments have great potential in this field. The present study assessed the environmental impacts via life cycle assessment (LCA) of five solar-based treatments - solar photolysis (with and without HO), photocatalysis using TiO (with and without HO) and circumneutral photo-Fenton - using a pilot-scale compound parabolic collector photoreactor to select the most suitable option for the removal of micropollutants (carbamazepine, diclofenac and sulfamethoxazole; 5 μg/L) from a secondary-treated wastewater. The ranking of solar treatments per highest generated impacts is, overall, as follows: circumneutral photo-Fenton > TiO-P25/HO > TiO-P25 > solar/HO > solar. While solar photolysis uses fewer resources and energy, thus generating lower environmental impacts, the common incomplete mineralization of the parent micropollutants implies that toxicity reduction cannot be guaranteed in this case. Aiming for a balance between ecotoxicity reduction and the impacts caused by the application of each technology, the solar TiO-P25 treatment, which was here investigated by LCA for the first time to remove organic micropollutants from secondary-treated urban wastewater, appears to be the most suitable option at the studied conditions (and when TiO is reused at least 5 times). One of the environmental downfalls of the assessed treatments is the energy required to produce the chemicals, and so the importance of minimizing external energy use during the application of advanced treatment processes is reinforced.
微污染物已被证实与淡水毒性和人体毒性有关。这些污染物在水体中的出现源于多种原因,包括常规城市污水处理厂排放的废水,这些废水并未设计用于去除微污染物。为此目的增加一个高级处理过程将允许减少毒性;然而,这也意味着进一步的资源和能源使用,从而导致其他环境影响。能源使用是与高级处理相关的环境影响的一个特别相关的热点;因此,基于太阳能的处理在这一领域具有巨大的潜力。本研究通过生命周期评估(LCA)评估了五种基于太阳能的处理方法的环境影响——太阳能光解(有和没有 HO)、使用 TiO 的光催化(有和没有 HO)和中性光芬顿——使用中试规模的复合抛物面集热器光反应器,从二级处理废水中选择最适合去除微污染物(卡马西平、双氯芬酸和磺胺甲恶唑;5μg/L)的方法。根据产生的最高影响对太阳能处理进行排名,总体而言,结果如下:中性光芬顿>TiO-P25/HO>TiO-P25>太阳能/HO>太阳能。虽然太阳能光解使用较少的资源和能源,因此产生较低的环境影响,但母体微污染物的常见不完全矿化意味着在这种情况下不能保证毒性降低。为了在减少生态毒性和每种技术应用造成的影响之间取得平衡,太阳能 TiO-P25 处理在本研究中首次被 LCA 用于从二级处理城市废水中去除有机微污染物,在研究条件下(当 TiO 至少重复使用 5 次时),它似乎是最合适的选择。评估处理方法的一个环境缺点是生产化学品所需的能源,因此在应用高级处理过程时,减少外部能源使用的重要性得到了加强。