Lescouzères Léa, Bomont Pascale
ATIP-Avenir Team, INM, INSERM, University of Montpellier, Montpellier, France.
Front Physiol. 2020 Oct 22;11:1022. doi: 10.3389/fphys.2020.01022. eCollection 2020.
Ubiquitination is a dynamic post-translational modification that regulates the fate of proteins and therefore modulates a myriad of cellular functions. At the last step of this sophisticated enzymatic cascade, E3 ubiquitin ligases selectively direct ubiquitin attachment to specific substrates. Altogether, the ∼800 distinct E3 ligases, combined to the exquisite variety of ubiquitin chains and types that can be formed at multiple sites on thousands of different substrates confer to ubiquitination versatility and infinite possibilities to control biological functions. E3 ubiquitin ligases have been shown to regulate behaviors of proteins, from their activation, trafficking, subcellular distribution, interaction with other proteins, to their final degradation. Largely known for tagging proteins for their degradation by the proteasome, E3 ligases also direct ubiquitinated proteins and more largely cellular content (organelles, ribosomes, etc.) to destruction by autophagy. This multi-step machinery involves the creation of double membrane autophagosomes in which engulfed material is degraded after fusion with lysosomes. Cooperating in sustaining homeostasis, actors of ubiquitination, proteasome and autophagy pathways are impaired or mutated in wide range of human diseases. From initial discovery of pathogenic mutations in the E3 ligase encoding for E6-AP in Angelman syndrome and Parkin in juvenile forms of Parkinson disease, the number of E3 ligases identified as causal gene for neurological diseases has considerably increased within the last years. In this review, we provide an overview of these diseases, by classifying the E3 ubiquitin ligase types and categorizing the neurological signs. We focus on the Gigaxonin-E3 ligase, mutated in giant axonal neuropathy and present a comprehensive analysis of the spectrum of mutations and the recent biological models that permitted to uncover novel mechanisms of action. Then, we discuss the common functions shared by Gigaxonin and the other E3 ligases in cytoskeleton architecture, cell signaling and autophagy. In particular, we emphasize their pivotal roles in controlling multiple steps of the autophagy pathway. In light of the various targets and extending functions sustained by a single E3 ligase, we finally discuss the challenge in understanding the complex pathological cascade underlying disease and in designing therapeutic approaches that can apprehend this complexity.
泛素化是一种动态的翻译后修饰,它调节蛋白质的命运,从而调控众多细胞功能。在这个复杂的酶促级联反应的最后一步,E3泛素连接酶选择性地将泛素连接到特定底物上。总共有约800种不同的E3连接酶,它们与可以在数千种不同底物的多个位点形成的各种泛素链和类型相结合,赋予了泛素化调控生物功能的多样性和无限可能性。E3泛素连接酶已被证明可调节蛋白质的行为,从其激活、运输、亚细胞分布、与其他蛋白质的相互作用到最终降解。E3连接酶主要因标记蛋白质以便被蛋白酶体降解而闻名,它还能将泛素化的蛋白质以及更广泛的细胞内容物(细胞器、核糖体等)导向自噬降解。这种多步骤机制涉及双膜自噬体的形成,其中被吞噬的物质在与溶酶体融合后被降解。泛素化、蛋白酶体和自噬途径的参与者在维持体内平衡方面相互协作,但在多种人类疾病中会受损或发生突变。从最初在天使综合征中编码E6-AP的E3连接酶以及青少年型帕金森病中的帕金蛋白中发现致病突变以来,在过去几年中,被确定为神经疾病致病基因的E3连接酶数量大幅增加。在本综述中,我们通过对E3泛素连接酶类型进行分类并对神经症状进行归类,对这些疾病进行了概述。我们重点关注在巨大轴索神经病中发生突变的Gigaxonin-E3连接酶,并对突变谱和最近揭示新作用机制的生物学模型进行了全面分析。然后,我们讨论了Gigaxonin与其他E3连接酶在细胞骨架结构、细胞信号传导和自噬方面的共同功能。特别是,我们强调了它们在控制自噬途径多个步骤中的关键作用。鉴于单个E3连接酶的各种靶点和扩展功能,我们最后讨论了理解疾病潜在复杂病理级联反应以及设计能够应对这种复杂性的治疗方法所面临的挑战。