Fellner Klemens, Kniely Michael
Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, 8010 Graz, Austria.
Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria.
J Elliptic Parabol Equ. 2020;6(2):529-598. doi: 10.1007/s41808-020-00068-8. Epub 2020 May 7.
In this paper, we establish convergence to equilibrium for a drift-diffusion-recombination system modelling the charge transport within certain semiconductor devices. More precisely, we consider a two-level system for electrons and holes which is augmented by an intermediate energy level for electrons in so-called trapped states. The recombination dynamics use the mass action principle by taking into account this additional trap level. The main part of the paper is concerned with the derivation of an entropy-entropy production inequality, which entails exponential convergence to the equilibrium via the so-called entropy method. The novelty of our approach lies in the fact that the entropy method is applied uniformly in a fast-reaction parameter which governs the lifetime of electrons on the trap level. Thus, the resulting decay estimate for the densities of electrons and holes extends to the corresponding quasi-steady-state approximation.
在本文中,我们针对模拟特定半导体器件内电荷传输的漂移 - 扩散 - 复合系统建立了向平衡态的收敛性。更确切地说,我们考虑一个电子和空穴的双能级系统,该系统通过所谓的俘获态电子的中间能级得到扩充。复合动力学通过考虑这个额外的陷阱能级运用质量作用原理。本文的主要部分致力于推导熵 - 熵产生不等式,该不等式通过所谓的熵方法导致向平衡态的指数收敛。我们方法的新颖之处在于熵方法在控制陷阱能级上电子寿命的快速反应参数中被一致地应用。因此,电子和空穴密度的所得衰减估计扩展到了相应的准稳态近似。