Suppr超能文献

基于血管超声诊断的癌症患者导管相关血栓形成新临床预测模型的开发与验证

Development and Validation of a New Clinical Prediction Model of Catheter-Related Thrombosis Based on Vascular Ultrasound Diagnosis in Cancer Patients.

作者信息

Liu Binliang, Xie Junying, Sun Xiaoying, Wang Yanfeng, Yuan Zhong, Liu Xiyu, Huang Zhou, Wang Jiani, Mo Hongnan, Yi Zongbi, Guan Xiuwen, Li Lixi, Wang Wenna, Li Hong, Ma Fei, Zeng Yixin

机构信息

Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Department of Management, Cancer Hospital of Huanxing, Beijing, China.

出版信息

Front Cardiovasc Med. 2020 Oct 26;7:571227. doi: 10.3389/fcvm.2020.571227. eCollection 2020.

Abstract

Central venous catheters are convenient for drug delivery and improved comfort for cancer patients, but they also cause serious complications. The most common complication is catheter-related thrombosis (CRT). This study aimed to evaluate the incidence and risk factors for CRT in cancer patients and develop an effective prediction model for CRT in cancer patients. The development of our prediction model was based on a retrospective cohort ( = 3,131) from the National Cancer Center. Our prediction model was confirmed in a prospective cohort from the National Cancer Center ( = 685) and a retrospective cohort from the Hunan Cancer Hospital ( = 61). The predictive accuracy and discriminative ability were determined by receiver operating characteristic (ROC) curves and calibration plots. Multivariate analysis demonstrated that sex, cancer type, catheter type, position of the catheter tip, chemotherapy status, and antiplatelet/anticoagulation status at baseline were independent risk factors for CRT. The area under the ROC curve of our prediction model was 0.741 (CI: 0.715-0.766) in the primary cohort and 0.754 (CI: 0.704-0.803) and 0.658 (CI: 0.470-0.845) in validation cohorts 1 and 2, respectively. The model also showed good calibration and clinical impact in the primary and validation cohorts. Our model is a novel prediction tool for CRT risk that accurately assigns cancer patients into high- and low-risk groups. Our model will be valuable for clinicians when making decisions regarding thromboprophylaxis.

摘要

中心静脉导管便于给药,可提高癌症患者的舒适度,但也会引发严重并发症。最常见的并发症是导管相关血栓形成(CRT)。本研究旨在评估癌症患者CRT的发生率和危险因素,并建立一种有效的癌症患者CRT预测模型。我们预测模型的开发基于国家癌症中心的一项回顾性队列研究(n = 3131)。我们的预测模型在国家癌症中心的一项前瞻性队列研究(n = 685)和湖南省肿瘤医院的一项回顾性队列研究(n = 61)中得到了验证。通过受试者工作特征(ROC)曲线和校准图确定预测准确性和判别能力。多因素分析表明,性别、癌症类型、导管类型、导管尖端位置、化疗状态以及基线时的抗血小板/抗凝状态是CRT的独立危险因素。我们预测模型在主要队列中的ROC曲线下面积为0.741(95%CI:0.715 - 0.766),在验证队列1和验证队列2中的面积分别为0.754(95%CI:0.704 - 0.803)和0.658(95%CI:0.470 - 0.845)。该模型在主要队列和验证队列中也显示出良好的校准和临床影响。我们的模型是一种用于CRT风险的新型预测工具,可准确地将癌症患者分为高风险和低风险组。我们的模型对于临床医生在进行血栓预防决策时具有重要价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1446/7649194/eb9649a40622/fcvm-07-571227-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验