Gong Zheng, Li Ming, Liu Xianwen, Xu Yuntao, Lu Juanjuan, Bruch Alexander, Surya Joshua B, Zou Changling, Tang Hong X
Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511, USA.
Department of Optics and Optics Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China.
Phys Rev Lett. 2020 Oct 30;125(18):183901. doi: 10.1103/PhysRevLett.125.183901.
Microcavity solitons enable miniaturized coherent frequency comb sources. However, the formation of microcavity solitons can be disrupted by stimulated Raman scattering, particularly in the emerging crystalline microcomb materials with high Raman gain. Here, we propose and implement dissipation control-tailoring the energy dissipation of selected cavity modes-to purposely raise or lower the threshold of Raman lasing in a strongly Raman-active lithium niobate microring resonator and realize on-demand soliton mode locking or Raman lasing. Numerical simulations are carried out to confirm our analyses and agree well with experiment results. Our work demonstrates an effective approach to address strong stimulated Raman scattering for microcavity soliton generation.
微腔孤子可实现小型化的相干频率梳源。然而,微腔孤子的形成可能会受到受激拉曼散射的干扰,特别是在具有高拉曼增益的新型晶体微梳材料中。在此,我们提出并实施耗散控制——调整选定腔模的能量耗散——以有意提高或降低强拉曼活性铌酸锂微环谐振器中拉曼激光的阈值,并实现按需孤子锁模或拉曼激光发射。进行了数值模拟以证实我们的分析,并且与实验结果吻合良好。我们的工作展示了一种有效解决强受激拉曼散射以产生微腔孤子的方法。