Suppr超能文献

石墨烯纳米片介导的膜扰动和脂双层翻转。

Membrane Perturbation and Lipid Flip-Flop Mediated by Graphene Nanosheet.

机构信息

Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong, China.

School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China.

出版信息

J Phys Chem B. 2020 Nov 25;124(47):10632-10640. doi: 10.1021/acs.jpcb.0c06089. Epub 2020 Nov 16.

Abstract

Graphene nanosheets (GNs) may spontaneously insert into cell membranes and perturb the dynamic organization of the surrounding lipid bilayer. Understanding the interaction between GNs and cell membranes is vital for learning how to avoid adverse effects and nanomedical applications. To better understand the nature of such perturbations, we performed molecular dynamics simulations to provide molecular details about the molecular mechanism. In this study, we observed two typical interaction states of the GN-membrane systems. Both states have different effects on the cell membrane (lipid density, membrane thickness, and the mobility of phospholipids). Of great interest is that the insertion of GNs could generate a liquid-ordered domain and dramatically reduce the rate of lipid flip-flop. A similar phenomenon could be found in the GN adhesion states. Thus, these results could facilitate molecular-level understanding of the cytotoxicity of nanomaterials and help future studies on designing personalized drugs and therapeutics for diseases.

摘要

石墨烯纳米片(GNs)可能会自发地插入细胞膜,并扰乱周围脂质双层的动态组织。了解 GNs 和细胞膜之间的相互作用对于了解如何避免不良反应和纳米医学应用至关重要。为了更好地理解这种干扰的本质,我们进行了分子动力学模拟,以提供有关分子机制的分子细节。在这项研究中,我们观察到 GN-膜系统的两种典型相互作用状态。这两种状态对细胞膜(脂质密度、膜厚度和磷脂的流动性)都有不同的影响。有趣的是,GN 的插入可以产生一个有序的液体域,并显著降低脂质翻转的速度。在 GN 黏附状态下也可以发现类似的现象。因此,这些结果可以促进对纳米材料细胞毒性的分子水平理解,并有助于未来研究针对疾病设计个性化药物和治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验