基于 GSVA 建立和验证胰腺癌中 miRNA 和 mRNA 数据集的通路预后签名。
Establishing and validating a pathway prognostic signature in pancreatic cancer based on miRNA and mRNA sets using GSVA.
机构信息
Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 401120, P R China.
Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong Province, P R China.
出版信息
Aging (Albany NY). 2020 Nov 10;12(22):22840-22858. doi: 10.18632/aging.103965.
Pancreatic cancer (PC) is a severe disease with the highest mortality rate among various cancers. It is urgent to find an effective and accurate way to predict the survival of PC patients. Gene set variation analysis (GSVA) was used to establish and validate a miRNA set-based pathway prognostic signature for PC (miPPSPC) and a mRNA set-based pathway prognostic signature for PC (mPPSPC) in independent datasets. An optimized miPPSPC was constructed by combining clinical parameters. The miPPSPC, optimized miPPSPC and mPPSPC were established and validated to predict the survival of PC patients and showed excellent predictive ability. Four metabolic pathways and one oxidative stress pathway were identified in the miPPSPC, whereas linoleic acid metabolism and the pentose phosphate pathway were identified in the mPPSPC. Key factors of the pentose phosphate pathway and linoleic acid metabolism, G6PD and CYP2C8/9/18/19, respectively, are related to the survival of PC patients according to our tissue microarray. Thus, the miPPSPC, optimized miPPSPC and mPPSPC can predict the survival of PC patients efficiently and precisely. The metabolic and oxidative stress pathways may participate in PC progression.
胰腺癌(PC)是一种严重的疾病,其死亡率在各种癌症中最高。迫切需要找到一种有效且准确的方法来预测 PC 患者的生存情况。本研究使用基因集变异分析(GSVA)方法,在独立数据集上建立和验证了基于 miRNA 集的 PC 预后通路特征(miPPSPC)和基于 mRNA 集的 PC 预后通路特征(mPPSPC)。通过结合临床参数,构建了优化的 miPPSPC。建立并验证了 miPPSPC、优化的 miPPSPC 和 mPPSPC,以预测 PC 患者的生存情况,显示出优异的预测能力。在 miPPSPC 中鉴定出四个代谢途径和一个氧化应激途径,而在 mPPSPC 中鉴定出亚麻酸代谢和戊糖磷酸途径。根据我们的组织微阵列,戊糖磷酸途径和亚麻酸代谢的关键因素,即 G6PD 和 CYP2C8/9/18/19,分别与 PC 患者的生存有关。因此,miPPSPC、优化的 miPPSPC 和 mPPSPC 可以有效地、精确地预测 PC 患者的生存情况。代谢和氧化应激途径可能参与 PC 的进展。