Department of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Cidade Universitária, 13083-862 Campinas, São Paulo, Brazil; Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain; Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. CV-315, km. 10,7, 46113 Moncada, Valencia, Spain.
IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain.
Food Chem. 2021 May 1;343:128517. doi: 10.1016/j.foodchem.2020.128517. Epub 2020 Oct 31.
Pasta is mostly composed by wheat flour and water. Nevertheless, flour can be partially replaced by fibers to provide extra nutrients in the diet. However, fiber can affect the technological quality of pasta if not properly distributed. Usually, determinations of parameters in pasta are destructive and time-consuming. The use of Near Infrared-Hyperspectral Imaging (NIR-HSI), together with machine learning methods, is valuable to improve the efficiency in the assessment of pasta quality. This work aimed to investigate the ability of NIR-HSI and augmented Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) for the evaluation, resolution and quantification of fiber distribution in enriched pasta. Results showed R between 0.28 and 0.89, %LOF < 6%, variance explained over 99%, and similarity between pure and recovered spectra over 96% and 98% in models using pure flour and control as initial estimates, respectively, demonstrating the applicability of NIR-HSI and MCR-ALS in the identification of fiber in pasta.
意大利面主要由面粉和水组成。然而,为了在饮食中提供额外的营养,可以部分用纤维替代面粉。但是,如果纤维分布不均匀,会影响意大利面的工艺质量。通常,意大利面参数的测定是破坏性的,而且耗时。近红外高光谱成像(NIR-HSI)与机器学习方法结合使用,有助于提高评估意大利面质量的效率。本工作旨在研究 NIR-HSI 和增强型多变量曲线分辨-交替最小二乘法(MCR-ALS)在评估、分辨和量化纤维在强化意大利面中分布的能力。结果表明,在分别使用纯面粉和对照作为初始估计的模型中,R 介于 0.28 到 0.89 之间,%LOF < 6%,解释方差超过 99%,纯光谱和恢复光谱之间的相似度超过 96%和 98%,证明了 NIR-HSI 和 MCR-ALS 在识别意大利面中的纤维的适用性。