Suppr超能文献

可见-短波近红外高光谱成像结合多元曲线分辨-交替最小二乘法诊断乳腺癌。

Visible-short wavelength near infrared hyperspectral imaging coupled with multivariate curve resolution-alternating least squares for diagnosis of breast cancer.

机构信息

Department of Chemistry, Sharif University of Technology, P.O. Box 11155-9516, Tehran, Iran.

Department of Chemistry, Sharif University of Technology, P.O. Box 11155-9516, Tehran, Iran.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2025 Jan 5;324:124966. doi: 10.1016/j.saa.2024.124966. Epub 2024 Aug 12.

Abstract

This study investigates the application of visible-short wavelength near-infrared hyperspectral imaging (Vis-SWNIR HSI) in the wavelength range of 400-950 nm and advanced chemometric techniques for diagnosing breast cancer (BC). The research involved 56 ex-vivo samples encompassing both cancerous and non-cancerous breast tissue from females. First, HSI images were analyzed using multivariate curve resolution-alternating least squares (MCR-ALS) to exploit pure spatial and spectral profiles of active components. Then, the MCR-ALS resolved spatial profiles were arranged in a new data matrix for exploration and discrimination between benign and cancerous tissue samples using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The PLS-DA classification accuracy of 82.1 % showed the potential of HSI and chemometrics for non-invasive detection of BC. Additionally, the resolved spectral profiles by MCR-ALS can be used to track the changes in the breast tissue during cancer and treatment. It is concluded that the proposed strategy in this work can effectively differentiate between cancerous and non-cancerous breast tissue and pave the way for further studies and potential clinical implementation of this innovative approach, offering a promising avenue for improving early detection and treatment outcomes in BC patients.

摘要

本研究探讨了可见-短波长近红外高光谱成像(Vis-SWNIR HSI)在 400-950nm 波长范围内的应用,以及先进的化学计量学技术在诊断乳腺癌(BC)中的应用。该研究涉及 56 个离体样本,包括女性的癌组织和非癌组织。首先,使用多元曲线分辨-交替最小二乘法(MCR-ALS)对 HSI 图像进行分析,以挖掘活性成分的纯空间和纯光谱分布。然后,将 MCR-ALS 解析的空间分布排列在一个新的数据矩阵中,使用主成分分析(PCA)和偏最小二乘判别分析(PLS-DA)对良性和癌组织样本进行探索和判别。PLS-DA 分类准确率为 82.1%,表明 HSI 和化学计量学在非侵入性检测 BC 方面具有潜力。此外,MCR-ALS 解析的光谱分布可用于跟踪乳腺癌组织在癌变和治疗过程中的变化。总之,本研究工作提出的策略可以有效地对癌组织和非癌组织进行区分,为进一步的研究和潜在的临床应用这种创新方法铺平了道路,为改善 BC 患者的早期检测和治疗效果提供了一个有前途的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验