Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
J Biosci Bioeng. 2021 Feb;131(2):168-175. doi: 10.1016/j.jbiosc.2020.09.018. Epub 2020 Nov 13.
Ex-situ biogas upgrading based on hydrogenotrophic methanogenic process has attracted much attention with the depletion of fossil fuels. Consumption of CO leads to the pH increase in the mixed cultures of biogas upgrading system. The hydrogenotrophic methanogens were enriched at pH 5.5-6.0, 7.0-7.5, and 8.5-9.0 and at 55°C and 70°C. The methane production activity and microbial community structure were evaluated. Semi-continuous experimental results showed that stable and similar methane production was obtained at pH 7.0-7.5 and 8.5-9.0. In addition, pH 8.5-9.0 presented higher maximum methane production rate compared to pH 7.0-7.5. pH below 6 obtained the longest lag phase time of about 17.4 h, more than twice the values at pH 7.0-7.5 (8.8 h) and pH 8.5-9.0 (6.9 h) at 55°C. The predominant methanogen was the genus Methanothermobacter, a hydrogenotrophic methanogen at higher temperatures. Methanobacterium became predominant at pH 8.5-9.0 and the abundance increased to 83.6% at 55°C. Coprothermobacter and Caldanaerobacter were identified as the core functional bacteria under alkaline condition and were likely involved in syntrophic acetate oxidation with hydrogenotrophic methanogens.
基于氢营养型产甲烷过程的沼气异地升级改造技术,随着化石燃料的枯竭而受到广泛关注。CO 的消耗会导致沼气升级系统混合培养物中的 pH 值升高。氢营养型产甲烷菌在 pH5.5-6.0、7.0-7.5 和 8.5-9.0 以及 55°C 和 70°C 时得到富集。评估了甲烷生产活性和微生物群落结构。半连续实验结果表明,在 pH7.0-7.5 和 8.5-9.0 下可获得稳定且相似的甲烷生产。此外,pH8.5-9.0 比 pH7.0-7.5 具有更高的最大甲烷产率。pH 低于 6 时,滞后期时间最长,约为 17.4 h,是 pH7.0-7.5(8.8 h)和 pH8.5-9.0(6.9 h)的两倍多,在 55°C 下。主要产甲烷菌为 Methanothermobacter 属,一种在较高温度下的氢营养型产甲烷菌。在 pH8.5-9.0 时,Methanobacterium 成为主要优势菌,其丰度在 55°C 时增加到 83.6%。Coprothermobacter 和 Caldanaerobacter 被鉴定为碱性条件下的核心功能细菌,可能与氢营养型产甲烷菌一起参与共乙酸氧化。