Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30441-30450. doi: 10.1073/pnas.2020306117. Epub 2020 Nov 16.
Chaperone oligomerization is often a key aspect of their function. Irrespective of whether chaperone oligomers act as reservoirs for active monomers or exhibit a chaperoning function themselves, understanding the mechanism of oligomerization will further our understanding of how chaperones maintain the proteome. Here, we focus on the class-II Hsp40, human DNAJB6b, a highly efficient inhibitor of protein self-assembly in vivo and in vitro that forms functional oligomers. Using single-quantum methyl-based relaxation dispersion NMR methods we identify critical residues for DNAJB6b oligomerization in its C-terminal domain (CTD). Detailed solution NMR studies on the structure of the CTD showed that a serine/threonine-rich stretch causes a backbone twist in the N-terminal β strand, stabilizing the monomeric form. Quantitative analysis of an array of NMR relaxation-based experiments (including Carr-Purcell-Meiboom-Gill relaxation dispersion, off-resonance profiles, lifetime line broadening, and exchange-induced shifts) on the CTD of both wild type and a point mutant (T142A) within the S/T region of the first β strand delineates the kinetics of the interconversion between the major twisted-monomeric conformation and a more regular β strand configuration in an excited-state dimer, as well as exchange of both monomer and dimer species with high-molecular-weight oligomers. These data provide insights into the molecular origins of DNAJB6b oligomerization. Further, the results reported here have implications for the design of β sheet proteins with tunable self-assembling properties and pave the way to an atomic-level understanding of amyloid inhibition.
伴侣寡聚化通常是其功能的一个关键方面。无论伴侣寡聚体是作为活性单体的储库发挥作用,还是本身表现出伴侣功能,理解寡聚化的机制都将有助于我们了解伴侣如何维持蛋白质组。在这里,我们关注的是 II 类 Hsp40 人 DNAJB6b,它是一种在体内和体外都能高效抑制蛋白质自组装的伴侣,能形成功能性寡聚体。我们使用单量子甲基基于弛豫分散 NMR 方法鉴定了 DNAJB6b 寡聚化的关键残基在其 C 端结构域(CTD)中。对 CTD 结构的详细溶液 NMR 研究表明,富含丝氨酸/苏氨酸的区域导致 N 端β链中的骨架扭曲,稳定了单体形式。对一系列基于 NMR 弛豫的实验(包括 Carr-Purcell-Meiboom-Gill 弛豫分散、非共振谱线轮廓、寿命线展宽和交换诱导位移)的定量分析,对野生型和点突变体(T142A)的 CTD 进行了分析,该点突变体位于第一β链的 S/T 区域内,这些实验描述了主要扭曲单体构象和更规则的β链构象之间的转换以及单体和二聚体与高分子量寡聚体之间的交换的动力学。这些数据为 DNAJB6b 寡聚化的分子起源提供了深入的了解。此外,这里报道的结果对具有可调自组装特性的β片层蛋白的设计具有启示意义,并为原子水平上理解淀粉样蛋白抑制铺平了道路。