Suppr超能文献

基于深度神经网络的超分辨率 DOA 估计。

Super resolution DOA estimation based on deep neural network.

机构信息

Southwest China Institute of Electronic Technology, Chengdu, 610036, China.

出版信息

Sci Rep. 2020 Nov 16;10(1):19859. doi: 10.1038/s41598-020-76608-y.

Abstract

Recently, deep neural network (DNN) studies on direction-of-arrival (DOA) estimations have attracted more and more attention. This new method gives an alternative way to deal with DOA problem and has successfully shown its potential application. However, these works are often restricted to previously known signal number, same signal-to-noise ratio (SNR) or large intersignal angular distance, which will hinder their generalization in real application. In this paper, we present a novel DNN framework that realizes higher resolution and better generalization to random signal number and SNR. Simulation results outperform that of previous works and reach the state of the art.

摘要

最近,基于深度神经网络(DNN)的到达方向(DOA)估计研究引起了越来越多的关注。这种新方法为处理 DOA 问题提供了一种替代方法,并成功展示了其潜在的应用。然而,这些工作通常局限于已知的信号数量、相同的信噪比(SNR)或较大的信号间角度距离,这将阻碍它们在实际应用中的推广。在本文中,我们提出了一种新的 DNN 框架,实现了对随机信号数量和 SNR 的更高分辨率和更好的泛化。仿真结果优于以往的工作,达到了最新水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8213/7670414/a41df03ecb6e/41598_2020_76608_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验