Reiter E O
Baystate Medical Center, Springfield, MA 01199.
J Adolesc Health Care. 1987 Nov;8(6):479-91. doi: 10.1016/0197-0070(87)90049-0.
This discussion has outlined current concepts in neuroendocrinologic control of pubertal onset and progression. Central nervous system regulation of the arcuate nucleus (ventromedial hypothalamus) pulse generator that subsequently controls pituitary gonadotropin synthesis and secretion has been highlighted. Significant investigative issues that deserve assessment in the next several years include the following: 1. Systematic neuropharmacologic, electrophysiologic, and anatomic assessment of the hypothalamic arcuate nucleus. These assessments would include the use of recombinant DNA technology to probe cellular regulation of GnRH production. 2. Physiologically oriented examination of hypothalamic GnRH synthesis and secretion, along with function in the remaining reproductive endocrine system, during situations of nutritional impairment and excessive energy utilization and psychologic stress. 3. Further assessment of the neurophysiologic inhibition of GnRH production during childhood and the late prepubertal reactivation of the arcuate nucleus pulse generator. Roles of opioids, dopamine, other neurotransmitters, and metabolic signals remain to be clarified. 4. Exploration of regulators of hypothalamic, pituitary, and gonadal function when pulsatile GnRH administration has replaced the usual hypothalamic mechanisms. Pituitary-gonadal interactions may be independently assessed. 5. Assessment of pubertal growth, endocrine function, and neuropharmacologic control mechanisms in circumstances of chemical removal of pituitary gonadotrope function by GnRH agonists or antagonists. 6. Concordance and discordance of potency estimates of gonadotropins made by bioassay and immunoassay. The biologic basis for qualitative changes in bioassayable levels of LH and FSH, often related to carbohydrate content of the glycoprotein, may help to explain changes of gonadal function during the pubertal process. The potential for significant molecular heterogeneity of the gonadotropins is recognized and suggests substantial posttranslational changes of LH and FSH. 7. A cogent delineation of the hormonal, nutritional, and energy regulators of the pubertal growth spurt, though not discussed in this manuscript, remains to be accomplished. The relationship between pituitary gonadotropins and growth hormone, sex steroids, and the various peptide growth factors, especially the relationship between the growth factors and intragonadal steroidogenesis and germ-cell production, remain to be resolved. The importance of local production and action of peptide-growth factors in diverse tissues, skeletal and other, is being increasingly recognized.(ABSTRACT TRUNCATED AT 400 WORDS)
本讨论概述了青春期启动和进展的神经内分泌控制的当前概念。着重介绍了中枢神经系统对弓状核(腹内侧下丘脑)脉冲发生器的调节,该脉冲发生器随后控制垂体促性腺激素的合成和分泌。未来几年值得评估的重要研究问题包括以下几点:1. 对下丘脑弓状核进行系统的神经药理学、电生理学和解剖学评估。这些评估将包括使用重组DNA技术来探究促性腺激素释放激素(GnRH)产生的细胞调节。2. 在营养受损、能量过度消耗和心理压力的情况下,对下丘脑GnRH的合成和分泌以及其余生殖内分泌系统的功能进行生理学导向的检查。3. 进一步评估儿童期GnRH产生的神经生理抑制以及青春期前后期弓状核脉冲发生器的重新激活。阿片类物质、多巴胺、其他神经递质和代谢信号的作用仍有待阐明。4. 当脉冲式GnRH给药取代了通常的下丘脑机制时,探索下丘脑、垂体和性腺功能的调节因子。垂体-性腺相互作用可单独评估。5. 在通过GnRH激动剂或拮抗剂化学去除垂体促性腺激素细胞功能的情况下,评估青春期生长、内分泌功能和神经药理学控制机制。6. 生物测定法和免疫测定法对促性腺激素效价估计的一致性和不一致性。生物测定法中LH和FSH水平定性变化的生物学基础,通常与糖蛋白的碳水化合物含量有关,可能有助于解释青春期过程中性腺功能的变化。促性腺激素存在显著分子异质性的可能性已得到认可,这表明LH和FSH存在大量翻译后变化。7. 尽管本手稿未讨论,但仍需对青春期生长突增的激素、营养和能量调节因子进行有力的描述。垂体促性腺激素与生长激素、性类固醇以及各种肽生长因子之间的关系,尤其是生长因子与性腺内类固醇生成和生殖细胞产生之间的关系,仍有待解决。肽生长因子在不同组织(骨骼和其他组织)中的局部产生和作用的重要性正日益受到认可。(摘要截于400字)