Suppr超能文献

基于多任务卷积神经网络的磁共振成像射频脉冲及伴随梯度设计。

Multi-task convolutional neural network-based design of radio frequency pulse and the accompanying gradients for magnetic resonance imaging.

机构信息

MR Clinical Science, Philips Healthcare (Suzhou), Suzhou, China.

MSC Clinical & Technical Solutions, Philips Healthcare, Beijing, China.

出版信息

NMR Biomed. 2021 Feb;34(2):e4443. doi: 10.1002/nbm.4443. Epub 2020 Nov 16.

Abstract

Modern MRI systems usually load the predesigned RFs and the accompanying gradients during clinical scans, with minimal adaption to the specific requirements of each scan. Here, we describe a neural network-based method for real-time design of excitation RF pulses and the accompanying gradients' waveforms to achieve spatially two-dimensional selectivity. Nine thousand sets of radio frequency (RF) and gradient waveforms with two-dimensional spatial selectivity were generated as the training dataset using the Shinnar-Le Roux (SLR) method. Neural networks were created and trained with five strategies (TS-1 to TS-5). The neural network-designed RF and gradients were compared with their SLR-designed counterparts and underwent Bloch simulation and phantom imaging to investigate their performances in spin manipulations. We demonstrate a convolutional neural network (TS-5) with multi-task learning to yield both the RF pulses and the accompanying two channels of gradient waveforms that comply with the SLR design, and these design results also provide excitation spatial profiles comparable with SLR pulses in both simulation (normalized root mean square error [NRMSE] of 0.0075 ± 0.0038 over the 400 sets of testing data between TS-5 and SLR) and phantom imaging. The output RF and gradient waveforms between the neural network and SLR methods were also compared, and the joint NRMSE, with both RF and the two channels of gradient waveforms considered, was 0.0098 ± 0.0024 between TS-5 and SLR. The RF and gradients were generated on a commercially available workstation, which took ~130 ms for TS-5. In conclusion, we present a convolutional neural network with multi-task learning, trained with SLR transformation pairs, that is capable of simultaneously generating RF and two channels of gradient waveforms, given the desired spatially two-dimensional excitation profiles.

摘要

现代 MRI 系统通常在临床扫描过程中加载预设的 RF 和伴随的梯度,对每个扫描的特定要求进行最小的适配。在这里,我们描述了一种基于神经网络的方法,用于实时设计激发 RF 脉冲和伴随的梯度波形,以实现二维空间选择性。使用 Shinnar-Le Roux (SLR) 方法生成了九千组具有二维空间选择性的射频 (RF) 和梯度波形作为训练数据集。使用五种策略 (TS-1 到 TS-5) 创建和训练神经网络。将神经网络设计的 RF 和梯度与它们的 SLR 设计的对应物进行比较,并进行 Bloch 模拟和体模成像,以研究它们在自旋操作中的性能。我们展示了一种具有多任务学习的卷积神经网络 (TS-5),它可以产生符合 SLR 设计的 RF 脉冲和伴随的两个通道的梯度波形,这些设计结果也提供了与 SLR 脉冲在模拟中(400 组测试数据之间的归一化均方根误差 [NRMSE] 为 0.0075 ± 0.0038,TS-5 和 SLR 之间)和体模成像中可比较的激发空间轮廓。还比较了神经网络和 SLR 方法之间的输出 RF 和梯度波形,将 RF 和两个通道的梯度波形都考虑在内,TS-5 和 SLR 之间的联合 NRMSE 为 0.0098 ± 0.0024。RF 和梯度是在商业上可用的工作站上生成的,对于 TS-5 需要大约 130 毫秒。总之,我们提出了一种具有多任务学习的卷积神经网络,它使用 SLR 变换对进行训练,能够在给定所需的二维空间激发轮廓的情况下同时生成 RF 和两个通道的梯度波形。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验