Wang Yunfan, Xiang Pan, Ren Aobo, Lai Huagui, Zhang Zhuoqiong, Xuan Zhipeng, Wan Zhenxi, Zhang Jingquan, Hao Xia, Wu Lili, Sugiyama Masakazu, Schwingenschlögl Udo, Liu Cai, Tang Zeguo, Wu Jiang, Wang Zhiming, Zhao Dewei
Institute of New Energy and Low-Carbon Technology & College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.
ACS Appl Mater Interfaces. 2020 Dec 2;12(48):53973-53983. doi: 10.1021/acsami.0c17338. Epub 2020 Nov 17.
Interface engineering is imperative to boost the extraction capability in perovskite solar cells (PSCs). We propose a promising approach to enhance the electron mobility and charge transfer ability of tin oxide (SnO) electron transport layer (ETL) by introducing a two-dimensional carbide (MXene) with strong interface interaction. The MXene-modified SnO ETL also offers a preferable growth platform for perovskite films with reduced trap density. Through a spatially resolved imaging technique, profoundly reduced non-radiative recombination and charge transport losses in PSCs based on MXene-modified SnO are also observed. As a result, the PSC achieves an enhanced efficiency of 20.65% with ultralow saturated current density and negligible hysteresis. We provide an in-depth mechanistic understanding of MXene interface engineering, offering an alternative approach to obtain efficient PSCs.
界面工程对于提高钙钛矿太阳能电池(PSC)的提取能力至关重要。我们提出了一种有前景的方法,通过引入具有强界面相互作用的二维碳化物(MXene)来增强氧化锡(SnO)电子传输层(ETL)的电子迁移率和电荷转移能力。经MXene改性的SnO ETL还为具有降低陷阱密度的钙钛矿薄膜提供了一个更好的生长平台。通过空间分辨成像技术,还观察到基于MXene改性SnO的PSC中非辐射复合和电荷传输损失显著降低。结果,该PSC实现了20.65%的提高效率,具有超低饱和电流密度和可忽略的滞后现象。我们对MXene界面工程进行了深入的机理理解,提供了一种获得高效PSC的替代方法。