Suppr超能文献

用于锂存储阳极的多层MXene上互连氧化锡纳米颗粒的制备。

Preparation of interconnected tin oxide nanoparticles on multi-layered MXene for lithium storage anodes.

作者信息

Rehman Wasif Ur, Khan Zahoor, Zahra Fatima, Laaskri Ait, Khan Habib, Farooq Umar, Bajaj Mohit, Zaitsev Ievgen

机构信息

Hubei Key Laboratory of Energy Storage and Power Battery School of Mathematics, Physics and Opto-electronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.

School of Physics, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.

出版信息

Sci Rep. 2024 Oct 23;14(1):25107. doi: 10.1038/s41598-024-76364-3.

Abstract

MXenes, a novel class of two-dimensional (2D) materials known for their excellent electronic conductivity and hydrophilicity, have emerged as promising candidates for lithium-ion battery anodes. This study presents a simple wet-chemical method for depositing interconnected SnO nanoparticles (NPs) onto MXene sheets. The SnO NPs act as both a high-capacity energy source and a spacer to prevent MXene sheets from restacking. The highly conductive MXene facilitates rapid electron and lithium-ion transport and mitigates the volume changes of SnO₂ during the lithiation/delithiation process by confining the SnO₂ NPs between the MXene layers. This composite anode, SnO@MXene, leverages the high capacity of SnO and the structural and mechanical stability MXene provides. The SnO@MXene anode exhibits superior electrochemical performance, with a high specific capacity of 678 mAh g at a current rate of 2.0 A g over 500 cycles, outperforming pristine MXenes and SnO nanoparticles.

摘要

MXenes是一类新型二维材料,以其优异的电子导电性和亲水性而闻名,已成为锂离子电池阳极的有前途的候选材料。本研究提出了一种简单的湿化学方法,用于在MXene片材上沉积相互连接的SnO纳米颗粒(NPs)。SnO NPs既作为高容量能源,又作为间隔物,以防止MXene片材重新堆叠。高导电性的MXene促进了电子和锂离子的快速传输,并通过将SnO₂ NPs限制在MXene层之间,减轻了锂化/脱锂过程中SnO₂的体积变化。这种复合阳极SnO@MXene利用了SnO的高容量以及MXene提供的结构和机械稳定性。SnO@MXene阳极表现出优异的电化学性能,在2.0 A g的电流速率下,经过500次循环后,比容量高达678 mAh g,优于原始MXenes和SnO纳米颗粒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b74/11500183/9f9572e43bc6/41598_2024_76364_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验