Suppr超能文献

在美国纽约州,致病变种菊欧文氏菌引起新几内亚凤仙(霍克凤仙花)黑胫病的首次报道。

First Report of Dickeya dianthicola causing blackleg on New Guinea Impatiens (Impatiens hawkeri) in New York State, USA.

作者信息

Liu Yingyu, Vasiu Sakshi, Daughtrey Margery Louise, Filiatrault Melanie

机构信息

Cornell University, 5922, Section of Plant Pathology and Plant-Microbe Biology, 335 Plant Science Bldg, Ithaca, New York, United States, 14853;

Cornell University, 5922, Section of Plant Pathology and Plant-Microbe Biology, Ithaca, New York, United States;

出版信息

Plant Dis. 2020 Nov 17. doi: 10.1094/PDIS-09-20-2020-PDN.

Abstract

New Guinea impatiens (NGI), Impatiens hawkeri, has a $54-million wholesale market value in the United States (National Agricultural Statistics Service, 2019) and is highly resistant to Impatiens downy mildew (Plasmopara obducens) according to growers' experience (Warfield, 2011). In March 2019, NGI cv. Petticoat White in a New York greenhouse showed wilting, black stem streaks and vascular discoloration, with a 20% disease incidence. Symptomatic tissue pieces were added to sterile water in a test tube and streaks made on potato dextrose agar (PDA). After incubation at 26oC for two days, the most abundant colony type (mucoid, pale yellow) was transferred to PDA. One representative colony was selected and labeled as isolate 67-19. A single colony of isolate 67-19 was transferred to lysogeny broth (LB) (Bertani, 1951) and cultured at 28oC. Genomic DNA was extracted and polymerase chain reaction (PCR) performed using the 16S rRNA gene universal primers fD2 and rP1 resulting in a partial 16S rRNA amplicon (Weisburg et al., 1991). Basic Local Alignment Search Tool (BLASTn) analysis (Altschul et al., 1990) showed 99% identity with sequences of species belonging to Dickeya. Different primer sets have been developed to detect and identify the genus Dickeya and its various species (Pritchard et al., 2013). The primer sets used for genus identification, dnaX (Sławiak et al., 2009), Df/Dr (Laurila et al., 2010) and ADE1/ADE2 (Nassar et al., 1996), resulted in 500-bp, 133-bp, and 420-bp amplicons, respectively. Results suggested the bacterium was a Dickeya sp. To determine whether the species could be D. dianthicola, the specific primer set DIA-A was used (Pritchard et al., 2013) and the expected product of 150-bp was obtained. BLASTn results showed that the partial dnaX sequence (GenBank accession MT895847) of isolate 67-19 had 99% identity with the sequence of D. dianthicola strain RNS04.9 isolated in 2004 from potato (Solanum tuberosum) in France (GenBank accession CP017638.1). Therefore, this isolate 67-19 was designated as D. dianthicola. The complete genome of D. dianthicola strain 67-19 was generated using Nanopore and Illumina sequencing (GenBank accession CP051429) (Liu et al., 2020). Average nucleotide identity (ANI) determined by FastANI (v1.1) (Jain et al., 2018) showed 97.43% identity between the genome of D. dianthicola strain 67-19 and that of D. dianthicola strain NCPPB 453 (GenBank accession GCA_000365305.1), isolated in 1957 from carnation (Dianthus caryophyllus) in the UK. The pathogenicity of D. dianthicola strain 67-19 was shown on NGI cultivars Petticoat White and Tamarinda White. In July 2020, sterile toothpicks were used to make wounds and to transfer bacteria from a 48-hr PDA culture of D. dianthicola strain 67-19 to the stems of four plants of each cultivar. Four plants of each cultivar were mock inoculated similarly and all wound sites were wrapped with Parafilm before placing plants on a greenhouse bench. Ten days later, stems inoculated with D. dianthicola strain 67-19 showed necrotic lesions similar to the original symptoms, while control plants did not show symptoms. One month after inoculation, bacteria were re-isolated from all symptomatic stems. PCR was performed on the re-isolated bacteria as described. The dnaX sequence (GenBank accession MT895847) was confirmed to match that of D. dianthicola strain 67-19 (GenBank accession CP051429) 100% and fragments of the expected size were amplified (Liu et al., 2020). Stab inoculations of strain 67-19 into potato stems and tubers also resulted in blackleg and soft rot symptoms at the sites of inoculation, while mock-inoculated stem and tuber showed no symptoms. The sequence of the dnaX gene of the re-isolated bacterium from inoculated potatoes was confirmed to match that of D. dianthicola strain 67-19. To our knowledge, this is the first report of blackleg of New Guinea impatiens caused by D. dianthicola in the United States and worldwide. Since the disease caused by D. dianthicola poses a significant threat to the ornamentals and potato industries (Charkowski et al., 2020), further research on genome biology, epidemiology and management options is needed. LITERATURE CITED Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403-410. Bertani, G. 1951. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology 62:293-300. Charkowski, A., Sharma, K., Parker, M.L., Secor, G.A., and Elphinstone, J. 2020. Bacterial diseases of potato. Pages 351-388 in: The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind, H. Campos and O. Ortiz, eds. Springer International Publishing, Cham. Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., and Aluru, S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nature Communications 9:5114. Laurila, J., Hannukkala, A., Nykyri, J., Pasanen, M., Hélias, V., Garlant, L., and Pirhonen, M. 2010. Symptoms and yield reduction caused by Dickeya spp. strains isolated from potato and river water in Finland. European Journal of Plant Pathology 126:249-262. Liu, Y., Helmann, T., Stodghill, P., and Filiatrault, M. 2020. Complete genome sequence resource for the necrotrophic plant-pathogenic bacterium Dickeya dianthicola 67-19 isolated from New Guinea Impatiens. Plant Disease. https://doi.org/10.1094/PDIS-09-20-1968-A. Nassar, A., Darrasse, A., Lemattre, M., Kotoujansky, A., Dervin, C., Vedel, R., and Bertheau, Y. 1996. Characterization of Erwinia chrysanthemi by pectinolytic isozyme polymorphism and restriction fragment length polymorphism analysis of PCR-amplified fragments of pel genes. Applied and Environmental Microbiology 62:2228-2235. National Agricultural Statistics Service. 2019. Floriculture crops 2018 summary. ISSN: 1949-0917. https://downloads.usda.library.cornell.edu/usda-esmis/files/0p0966899/rr1728124/76537c134/floran19.pdf Pritchard, L., Humphris, S., Saddler, G.S., Parkinson, N.M., Bertrand, V., Elphinstone, J.G., and Toth, I.K. 2013. Detection of phytopathogens of the genus Dickeya using a PCR primer prediction pipeline for draft bacterial genome sequences. Plant Pathology 62:587-596. Sławiak, M., van Beckhoven, J.R.C.M., Speksnijder, A.G.C.L., Czajkowski, R., Grabe, G., and van der Wolf, J.M. 2009. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. European Journal of Plant Pathology 125:245-261. Warfield, C.Y. (2011). Downy Mildew of Impatiens. In GrowerTalks. https://www.growertalks.com/Article/?articleid=18921 Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173:697-703.

摘要

新几内亚凤仙(New Guinea impatiens,NGI),学名为凤仙花(Impatiens hawkeri),在美国拥有5400万美元的批发市场价值(美国国家农业统计局,2019年),并且根据种植者的经验,它对凤仙花霜霉病(Plasmopara obducens)具有高度抗性(沃菲尔德,2011年)。2019年3月,纽约一个温室里的新几内亚凤仙品种“衬裙白”出现萎蔫、黑色茎条纹和维管束变色,发病率为20%。将有症状的组织块加入试管中的无菌水中,并在马铃薯葡萄糖琼脂(PDA)上划线。在26℃下培养两天后,将最丰富的菌落类型(黏液状、浅黄色)转移到PDA上。选择一个代表性菌落并标记为分离株67 - 19。将分离株67 - 19的单个菌落转移到溶原肉汤(LB)(贝尔塔尼,1951年)中,并在28℃下培养。提取基因组DNA,并使用16S rRNA基因通用引物fD2和rP1进行聚合酶链反应(PCR),得到一个部分16S rRNA扩增子(韦斯伯格等人,1991年)。基本局部比对搜索工具(BLASTn)分析(阿尔茨舒尔等人,1990年)显示,其与属于果胶杆菌属(Dickeya)的物种序列有99%的同一性。已经开发了不同的引物组来检测和鉴定果胶杆菌属及其各种物种(普里查德等人,2013年)。用于属鉴定的引物组,即dnaX(斯瓦维克等人,2009年)、Df/Dr(劳里拉等人,2010年)和ADE1/ADE2(纳萨尔等人,1996年),分别产生了500 bp、133 bp和420 bp的扩增子。结果表明该细菌是一种果胶杆菌属细菌。为了确定该物种是否可能是石竹果胶杆菌(D. dianthicola),使用了特异性引物组DIA - A(普里查德等人,2013年),并获得了150 bp的预期产物。BLASTn结果显示,分离株67 - 19的部分dnaX序列(GenBank登录号MT895847)与2004年从法国马铃薯(Solanum tuberosum)中分离的石竹果胶杆菌菌株RNS04.9的序列有99%的同一性(GenBank登录号CP017638.1)。因此,该分离株67 - 19被指定为石竹果胶杆菌。使用纳米孔和Illumina测序技术生成了石竹果胶杆菌菌株67 - 19的完整基因组(GenBank登录号CP051429)(刘等人,2020年)。通过FastANI(v1.1)(贾因等人,2018年)确定的平均核苷酸同一性(ANI)显示,石竹果胶杆菌菌株67 - 19的基因组与1957年从英国康乃馨(Dianthus caryophyllus)中分离的石竹果胶杆菌菌株NCPPB 453(GenBank登录号GCA_000365305.1)的基因组之间有97.43%的同一性。石竹果胶杆菌菌株67 - 19对新几内亚凤仙品种“衬裙白”和“塔马林达白”表现出致病性。2020年7月,使用无菌牙签造成伤口,并将来自石竹果胶杆菌菌株67 - 19的48小时PDA培养物中的细菌转移到每个品种的四株植物的茎上。每个品种的四株植物进行类似的模拟接种,并且在将植物放置在温室长凳上之前,所有伤口部位都用Parafilm包裹。十天后,接种了石竹果胶杆菌菌株67 - 19的茎出现了类似于原始症状的坏死病变,而对照植物没有出现症状。接种一个月后,从所有有症状的茎中重新分离出细菌。按照上述方法对重新分离出的细菌进行PCR。确认dnaX序列(GenBank登录号MT895847)与石竹果胶杆菌菌株67 - 19(GenBank登录号CP051429)的序列100%匹配,并且扩增出了预期大小的片段(刘等人,2020年)。将菌株67 - 19针刺接种到马铃薯茎和块茎中,接种部位也出现了黑胫病和软腐病症状,而模拟接种的茎和块茎没有出现症状。从接种马铃薯中重新分离出的细菌的dnaX基因序列被确认与石竹果胶杆菌菌株67 - 19的序列匹配。据我们所知,这是美国和全球范围内首次关于石竹果胶杆菌引起新几内亚凤仙黑胫病的报道。由于石竹果胶杆菌引起的疾病对观赏植物和马铃薯产业构成了重大威胁(查科夫斯基等人,2020年),因此需要对基因组生物学、流行病学和管理方法进行进一步研究。参考文献阿尔茨舒尔,S.F.,吉什,W.,米勒,W.,迈尔斯,E.W.,和利普曼,D.J. 1990. 基本局部比对搜索工具。《分子生物学杂志》215:403 - 410。贝尔塔尼,G. 1951. 关于溶原性的研究。I. 溶原性大肠杆菌释放噬菌体的方式。《细菌学杂志》62:293 - 300。查科夫斯基,A.,夏尔马,K.,帕克,M.L.,西科尔,G.A.,和埃尔芬斯通,J. 2020. 马铃薯细菌病害。载于:《马铃薯作物:其对人类的农业、营养和社会贡献》,H. 坎波斯和O. 奥尔蒂斯编。施普林格国际出版公司,尚姆。贾因,C.,罗德里格斯 - R,L.M.,菲利皮,A.M.,康斯坦丁尼迪斯,K.T.,和阿鲁鲁,S. 2018. 对90K原核生物基因组的高通量ANI分析揭示了清晰的物种界限。《自然通讯》9:5114。劳里拉,J.,汉努卡拉,A.,尼基里,J.,帕萨宁,M.,埃利亚斯,V.,加兰特,L.,和皮尔霍宁,M. 2010. 从芬兰马铃薯和河水中分离的果胶杆菌属菌株引起的症状和产量降低。《欧洲植物病理学杂志》126:249 - 262。刘,Y.,赫尔曼,T.,斯托德希尔,P.,和菲利阿托,M. 2020. 从新几内亚凤仙中分离的坏死性植物病原细菌石竹果胶杆菌67 - 19的完整基因组序列资源。《植物病害》。https://doi.org/10.1094/PDIS - 09 - 20 - 1968 - A。纳萨尔,A.,达拉塞,A.,勒马特雷,M.,科图扬斯基,A.,德尔文,C.,韦德尔,R.,和贝尔托,Y. 1996. 通过果胶分解同工酶多态性和pel基因PCR扩增片段的限制性片段长度多态性分析对菊欧文氏菌进行鉴定。《应用与环境微生物学》62:2228 - 2235。美国国家农业统计局。2019. 2018年花卉作物总结。ISSN: 1949 - 0917。https://downloads.usda.library.cornell.edu/usda - esmis/files/0p0966899/rr1728124/76537c134/floran19.pdf普里查德,L.,汉弗莱斯,S.,萨德勒,G.S.,帕金森,N.M.,伯特兰,V.,埃尔芬斯通,J.G.,和托斯,I.K. 2013. 使用针对细菌基因组草图序列的PCR引物预测管道检测果胶杆菌属植物病原体。《植物病理学》62:587 - 596。斯瓦维克,M.,范·贝克霍芬,J.R.C.M.,斯佩克斯尼德,A.G.C.L.,恰尔科夫斯基,R.格拉贝,G.,和范·德·沃尔夫,J.M. 2009. 生化和遗传分析揭示了从欧洲马铃薯中分离的生物变种3果胶杆菌属菌株的一个新分支。《欧洲植物病理学杂志》125:245 - 261。沃菲尔德,C.Y.(2011)。凤仙花霜霉病。载于《种植者谈话》。https://www.growertalks.com/Article/?articleid = 18921韦斯伯格,W.G.,巴恩斯,S.M.,佩利捷,D.A.,和莱恩,D.J. 1991. 用于系统发育研究的16S核糖体DNA扩增。《细菌学杂志》173:697 - 703。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验