Luke Ward W, Russell Rick
Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
Methods Mol Biol. 2021;2209:1-16. doi: 10.1007/978-1-0716-0935-4_1.
Cellular RNAs depend on proteins for efficient folding to specific functional structures and for transitions between functional structures. This dependence arises from intrinsic properties of RNA structure. Specifically, RNAs possess stable local structure, largely in the form of helices, and there are abundant opportunities for RNAs to form alternative helices and tertiary contacts and therefore to populate alternative structures. Proteins with RNA chaperone activity, either ATP-dependent or ATP-independent, can promote structural transitions by interacting with single-stranded RNA (ssRNA) to compete away partner interactions and then release ssRNA so that it can form new interactions. In this chapter we review the basic properties of RNA and the proteins that function as chaperones and remodelers. We then use these properties as a foundation to explore key points for the design and interpretation of experiments that probe RNA rearrangements and their acceleration by proteins.
细胞RNA依赖蛋白质才能高效折叠成特定的功能结构,并在功能结构之间进行转变。这种依赖性源于RNA结构的内在特性。具体而言,RNA具有稳定的局部结构,主要以螺旋形式存在,并且RNA有大量机会形成替代螺旋和三级相互作用,从而形成替代结构。具有RNA伴侣活性的蛋白质,无论是ATP依赖性还是ATP非依赖性的,都可以通过与单链RNA(ssRNA)相互作用来促进结构转变,竞争掉伴侣相互作用,然后释放ssRNA,使其能够形成新的相互作用。在本章中,我们将综述RNA的基本特性以及作为伴侣蛋白和重塑蛋白发挥功能的蛋白质。然后,我们以这些特性为基础,探索用于探测RNA重排及其被蛋白质加速过程的实验设计和解释的关键点。