文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用国家创伤数据库(NTDB)和机器学习预测入院创伤患者的死亡率。

Using the National Trauma Data Bank (NTDB) and machine learning to predict trauma patient mortality at admission.

机构信息

Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

Department of Trauma Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.

出版信息

PLoS One. 2020 Nov 17;15(11):e0242166. doi: 10.1371/journal.pone.0242166. eCollection 2020.


DOI:10.1371/journal.pone.0242166
PMID:33201935
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7671512/
Abstract

A 400-estimator gradient boosting classifier was trained to predict survival probabilities of trauma patients. The National Trauma Data Bank (NTDB) provided 799233 complete patient records (778303 survivors and 20930 deaths) each containing 32 features, a number further reduced to only 8 features via the permutation importance method. Importantly, the 8 features can all be readily determined at admission: systolic blood pressure, heart rate, respiratory rate, temperature, oxygen saturation, gender, age and Glasgow coma score. Since death was rare, a rebalanced training set was used to train the model. The model is able to predict a survival probability for any trauma patient and accurately distinguish between a deceased and survived patient in 92.4% of all cases. Partial dependence curves (Psurvival vs. feature value) obtained from the trained model revealed the global importance of Glasgow coma score, age, and systolic blood pressure while pulse rate, respiratory rate, temperature, oxygen saturation, and gender had more subtle single variable influences. Shapley values, which measure the relative contribution of each of the 8 features to individual patient risk, were computed for several patients and were able to quantify patient-specific warning signs. Using the NTDB to sample across numerous patient traumas and hospital protocols, the trained model and Shapley values rapidly provides quantitative insight into which combination of variables in an 8-dimensional space contributed most to each trauma patient's predicted global risk of death upon emergency room admission.

摘要

使用 400 个估计量的梯度提升分类器来预测创伤患者的生存概率。国家创伤数据库(NTDB)提供了 799233 份完整的患者记录(778303 名幸存者和 20930 名死亡者),每份记录包含 32 个特征,通过排列重要性方法进一步减少到只有 8 个特征。重要的是,这 8 个特征在入院时都可以很容易地确定:收缩压、心率、呼吸率、体温、血氧饱和度、性别、年龄和格拉斯哥昏迷评分。由于死亡人数较少,因此使用了再平衡的训练集来训练模型。该模型能够预测任何创伤患者的生存概率,并在 92.4%的情况下准确区分死亡和存活患者。从训练有素的模型中获得的部分依赖曲线(Psurvival 与特征值)显示了格拉斯哥昏迷评分、年龄和收缩压的全局重要性,而脉搏率、呼吸率、体温、血氧饱和度和性别则具有更细微的单变量影响。Shapley 值用于衡量 8 个特征中的每一个对个体患者风险的相对贡献,为几个患者计算了 Shapley 值,并能够量化患者特定的警告信号。通过使用 NTDB 在多个患者创伤和医院协议中进行抽样,训练有素的模型和 Shapley 值可以快速提供有关 8 维空间中哪些变量组合对每个创伤患者急诊入院时的全球死亡风险预测贡献最大的定量见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/25019c300deb/pone.0242166.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/0be13033b905/pone.0242166.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/fb5d0bfe6142/pone.0242166.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/d325783cd9e3/pone.0242166.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/fccc86395238/pone.0242166.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/67d8c0dab1f9/pone.0242166.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/c2db03e8fd04/pone.0242166.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/25019c300deb/pone.0242166.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/0be13033b905/pone.0242166.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/fb5d0bfe6142/pone.0242166.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/d325783cd9e3/pone.0242166.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/fccc86395238/pone.0242166.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/67d8c0dab1f9/pone.0242166.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/c2db03e8fd04/pone.0242166.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b77/7671512/25019c300deb/pone.0242166.g007.jpg

相似文献

[1]
Using the National Trauma Data Bank (NTDB) and machine learning to predict trauma patient mortality at admission.

PLoS One. 2020

[2]
The prediction of the survival in patients with severe trauma during prehospital care: Analyses based on NTDB database.

Eur J Trauma Emerg Surg. 2024-8

[3]
Predicting hospital mortality among injured children using a national trauma database.

J Trauma. 2006-4

[4]
Predicting risk for trauma patients using static and dynamic information from the MIMIC III database.

PLoS One. 2022

[5]
Improving the performance of the Revised Trauma Score using Shock Index, Peripheral Oxygen Saturation, and Temperature-a National Trauma Database study 2011 to 2015.

Surgery. 2020-2-14

[6]
ICD-10 based machine learning models outperform the Trauma and Injury Severity Score (TRISS) in survival prediction.

PLoS One. 2022

[7]
Developing best practices to study trauma outcomes in large databases: an evidence-based approach to determine the best mortality risk adjustment model.

J Trauma Acute Care Surg. 2014-4

[8]
Revised trauma scoring system to predict in-hospital mortality in the emergency department: Glasgow Coma Scale, Age, and Systolic Blood Pressure score.

Crit Care. 2011-8-10

[9]
Predicting outcomes after trauma: Prognostic model development based on admission features through machine learning.

Medicine (Baltimore). 2021-12-10

[10]
[A new score system for prediction of death in patients with severe trauma: the value of death warning score].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2015-11

引用本文的文献

[1]
Machine learning-based prediction of mortality in pediatric trauma patients.

Front Pediatr. 2025-2-27

[2]
Development of clinical decision support for patients older than 65 years with fall-related TBI using artificial intelligence modeling.

PLoS One. 2025-2-3

[3]
Value of trauma registries in improving global trauma outcomes.

Trauma Surg Acute Care Open. 2024-6-3

[4]
Identifying Age-Specific Risk Factors for Poor Outcomes After Trauma With Machine Learning.

J Surg Res. 2024-4

[5]
An Artificial Intelligence Model for Predicting Trauma Mortality Among Emergency Department Patients in South Korea: Retrospective Cohort Study.

J Med Internet Res. 2023-8-29

[6]
An efficient edge/cloud medical system for rapid detection of level of consciousness in emergency medicine based on explainable machine learning models.

Neural Comput Appl. 2023

[7]
Science fiction or clinical reality: a review of the applications of artificial intelligence along the continuum of trauma care.

World J Emerg Surg. 2023-3-6

[8]
Artificial intelligence and machine learning for hemorrhagic trauma care.

Mil Med Res. 2023-2-16

[9]
Decision support by machine learning systems for acute management of severely injured patients: A systematic review.

Front Surg. 2022-10-10

[10]
Data Science Trends Relevant to Nursing Practice: A Rapid Review of the 2020 Literature.

Appl Clin Inform. 2022-1

本文引用的文献

[1]
Elevated blood alcohol impacts hospital mortality following motorcycle injury: A National Trauma Data Bank analysis.

Injury. 2019-10-4

[2]
Explainable machine-learning predictions for the prevention of hypoxaemia during surgery.

Nat Biomed Eng. 2018-10-10

[3]
Coagulopathy implications using a multiscale model of traumatic bleeding matching macro- and microcirculation.

Am J Physiol Heart Circ Physiol. 2019-4-12

[4]
Identification and internal validation of models for predicting survival and ICU admission following a traumatic injury.

Scand J Trauma Resusc Emerg Med. 2018-11-12

[5]
Multiscale systems biology of trauma-induced coagulopathy.

Wiley Interdiscip Rev Syst Biol Med. 2018-2-27

[6]
Machine Learning for Predicting Outcomes in Trauma.

Shock. 2017-11

[7]
On-admission blood pressure and pulse rate in trauma patients and their correlation with mortality: Cushing's phenomenon revisited.

Int J Crit Illn Inj Sci. 2017

[8]
The golden hour in trauma: dogma or medical folklore?

Injury. 2015-4

[9]
Increasing trauma deaths in the United States.

Ann Surg. 2014-7

[10]
A computational model of hemorrhage and dehydration suggests a pathophysiological mechanism: Starling-mediated protein trapping.

Am J Physiol Heart Circ Physiol. 2012-11-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索