一种用于预测韩国急诊科创伤患者死亡率的人工智能模型:回顾性队列研究。

An Artificial Intelligence Model for Predicting Trauma Mortality Among Emergency Department Patients in South Korea: Retrospective Cohort Study.

机构信息

Department of Biomedical Engineering, Kyung Hee University, Yongin, Republic of Korea.

Department of Trauma Surgery, Jeju Regional Trauma Center, Cheju Halla General Hospital, Jeju, Republic of Korea.

出版信息

J Med Internet Res. 2023 Aug 29;25:e49283. doi: 10.2196/49283.

Abstract

BACKGROUND

Within the trauma system, the emergency department (ED) is the hospital's first contact and is vital for allocating medical resources. However, there is generally limited information about patients that die in the ED.

OBJECTIVE

The aim of this study was to develop an artificial intelligence (AI) model to predict trauma mortality and analyze pertinent mortality factors for all patients visiting the ED.

METHODS

We used the Korean National Emergency Department Information System (NEDIS) data set (N=6,536,306), incorporating over 400 hospitals between 2016 and 2019. We included the International Classification of Disease 10th Revision (ICD-10) codes and chose the following input features to predict ED patient mortality: age, sex, intentionality, injury, emergent symptom, Alert/Verbal/Painful/Unresponsive (AVPU) scale, Korean Triage and Acuity Scale (KTAS), and vital signs. We compared three different feature set performances for AI input: all features (n=921), ICD-10 features (n=878), and features excluding ICD-10 codes (n=43). We devised various machine learning models with an ensemble approach via 5-fold cross-validation and compared the performance of each model with that of traditional prediction models. Lastly, we investigated explainable AI feature effects and deployed our final AI model on a public website, providing access to our mortality prediction results among patients visiting the ED.

RESULTS

Our proposed AI model with the all-feature set achieved the highest area under the receiver operating characteristic curve (AUROC) of 0.9974 (adaptive boosting [AdaBoost], AdaBoost + light gradient boosting machine [LightGBM]: Ensemble), outperforming other state-of-the-art machine learning and traditional prediction models, including extreme gradient boosting (AUROC=0.9972), LightGBM (AUROC=0.9973), ICD-based injury severity scores (AUC=0.9328 for the inclusive model and AUROC=0.9567 for the exclusive model), and KTAS (AUROC=0.9405). In addition, our proposed AI model outperformed a cutting-edge AI model designed for in-hospital mortality prediction (AUROC=0.7675) for all ED visitors. From the AI model, we also discovered that age and unresponsiveness (coma) were the top two mortality predictors among patients visiting the ED, followed by oxygen saturation, multiple rib fractures (ICD-10 code S224), painful response (stupor, semicoma), and lumbar vertebra fracture (ICD-10 code S320).

CONCLUSIONS

Our proposed AI model exhibits remarkable accuracy in predicting ED mortality. Including the necessity for external validation, a large nationwide data set would provide a more accurate model and minimize overfitting. We anticipate that our AI-based risk calculator tool will substantially aid health care providers, particularly regarding triage and early diagnosis for trauma patients.

摘要

背景

在创伤系统中,急诊科是医院的第一接触点,对于分配医疗资源至关重要。然而,通常对于在急诊科死亡的患者,相关信息有限。

目的

本研究旨在开发一种人工智能(AI)模型,以预测所有就诊于急诊科的患者的创伤死亡率,并分析相关的死亡因素。

方法

我们使用了韩国国家急诊信息系统(NEDIS)数据集(2016 年至 2019 年期间涵盖 400 多家医院的数据),纳入了国际疾病分类第 10 版(ICD-10)代码,并选择了以下输入特征来预测急诊科患者的死亡率:年龄、性别、意图、损伤、紧急症状、意识状态评估(AVPU 量表)、韩国分诊和急症严重程度评分(KTAS)和生命体征。我们比较了 AI 输入的三种不同特征集表现:所有特征(n=921)、ICD-10 特征(n=878)和不包括 ICD-10 代码的特征(n=43)。我们通过 5 折交叉验证设计了各种基于集成方法的机器学习模型,并比较了每个模型与传统预测模型的性能。最后,我们研究了可解释 AI 特征的影响,并在一个公共网站上部署了我们的最终 AI 模型,为就诊于急诊科的患者提供死亡率预测结果。

结果

我们提出的 AI 模型使用全特征集实现了最高的接收器工作特征曲线下面积(AUROC)为 0.9974(自适应增强[AdaBoost]、AdaBoost+轻梯度提升机[LightGBM]:集成),优于其他最先进的机器学习和传统预测模型,包括极端梯度提升(AUROC=0.9972)、LightGBM(AUROC=0.9973)、基于 ICD 的损伤严重程度评分(综合模型的 AUC=0.9328 和专有模型的 AUROC=0.9567)和 KTAS(AUROC=0.9405)。此外,我们提出的 AI 模型在预测所有就诊于急诊科的患者的死亡率方面优于专为院内死亡率预测而设计的最先进 AI 模型(AUROC=0.7675)。从 AI 模型中,我们还发现年龄和无反应(昏迷)是急诊科就诊患者死亡的前两个最重要的预测因素,其次是氧饱和度、多发性肋骨骨折(ICD-10 编码 S224)、疼痛反应(昏迷、中度昏迷)和腰椎骨折(ICD-10 编码 S320)。

结论

我们提出的 AI 模型在预测急诊科死亡率方面具有显著的准确性。包括外部验证的必要性在内,一个更大的全国性数据集将提供更准确的模型,并最小化过拟合。我们预计,我们的基于 AI 的风险计算器工具将极大地帮助医疗保健提供者,特别是在创伤患者的分诊和早期诊断方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cbbc/10498319/5295d4551394/jmir_v25i1e49283_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索