Department of Radiation Oncology, Duke University, Durham, NC, United States of America.
Phys Med Biol. 2021 Jan 29;66(3):035021. doi: 10.1088/1361-6560/abcb20.
To investigate the feasibility of the log-demons deformable image registration (DIR) method to correct eddy current and field inhomogeneity distortions while preserving diffusion tensor information. Diffusion-weighted images (DWIs) are susceptible to distortions caused by eddy current and echo-planar imaging (EPI) gradients. We propose a post-acquisition correction algorithm using the log-demons DIR technique for eddy current and field inhomogeneity distortions of DWI. The new correction technique was applied to DWI acquired using a diffusion phantom and the multiple acquisitions for standardization of structural imaging validation and evaluation (MASSIVE) brain database. This method is compared to previous methods using cross-correlation, mutual information (MI). In the phantom study, the log-demons algorithm reduced eddy current and field inhomogeneity distortions while preserving diffusion tensor information when compared to affine and demon's registration techniques. Analysis of the tensor metrics using percent difference and the root mean square of the apparent diffusion coefficient and fractional anisotropy found that the log-demons algorithm outperforms the other algorithms in terms of preserving diffusion information. In the MASSIVE study, the average MI of all slices increased for both eddy current and field inhomogeneity distortion correction. The average absolute differences of all slices between corrected images with opposing gradients were also on average decreased. This work indicates that the log-demons DIR algorithm is feasible to reduce eddy current and field inhomogeneity distortions while preserving quantitative diffusion information.
为了研究对数恶魔变形图像配准(DIR)方法在保留扩散张量信息的同时校正涡流和磁场不均匀性失真的可行性。扩散加权图像(DWIs)容易受到涡流和平面回波成像(EPI)梯度引起的失真的影响。我们提出了一种使用对数恶魔 DIR 技术的后采集校正算法,用于校正 DWI 的涡流和磁场不均匀性失真。新的校正技术应用于扩散体采集的 DWI 和用于结构成像标准化验证和评估(MASSIVE)脑数据库的多次采集。该方法与以前的使用互相关和互信息(MI)的方法进行了比较。在体模研究中,与仿射和恶魔配准技术相比,对数恶魔算法在保留扩散张量信息的同时减少了涡流和磁场不均匀性失真。使用百分比差异和表观扩散系数和各向异性分数的均方根分析张量指标表明,对数恶魔算法在保留扩散信息方面优于其他算法。在 MASSIVE 研究中,涡流和磁场不均匀性失真校正后所有切片的平均 MI 都增加了。具有相反梯度的校正图像之间的所有切片的平均绝对差异也平均减小。这项工作表明,对数恶魔 DIR 算法可用于减少涡流和磁场不均匀性失真,同时保留定量扩散信息。