Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland.
NIH MRI Research Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland.
Magn Reson Med. 2019 Apr;81(4):2774-2787. doi: 10.1002/mrm.27577. Epub 2018 Nov 5.
To propose a methodology for assessment of algorithms that correct distortions due to motion, eddy-currents, and echo planar imaging in diffusion weighted images (DWIs).
The proposed method evaluates correction performance by measuring variability across datasets of the same object acquired with images having distortions in different directions, thereby overcoming the unavailability of ground-truth, undistorted DWIs. A comprehensive diffusion MRI dataset, collected using a suitable experimental design, is made available to the scientific community, consisting of three DWI shells (Bmax = 5000 s/mm ), 30 gradient directions, a replicate set of antipodal gradient directions, four phase-encoding directions, and three different head orientations. The proposed methodology was tested using the TORTOISE diffusion MRI processing pipeline.
The median variability of the original distorted data was 123% higher for DWIs, 100-168% higher for tensor-derived metrics and 28-111% higher for MAPMRI metrics, than in the corrected versions. EPI distortions induced substantial variability, nearly comparable to the contribution of eddy-current distortions.
The dataset and the evaluation strategy proposed herein enable quantitative comparison of different methods for correction of distortions due to motion, eddy-currents, and other EPI distortions, and can be useful in benchmarking newly developed algorithms.
提出一种评估算法的方法,用于校正扩散加权图像(DWIs)中因运动、涡流和回波平面成像引起的扭曲。
该方法通过测量同一物体的数据集在不同方向的扭曲图像中的变异性来评估校正性能,从而克服了缺乏真实、未扭曲 DWIs 的问题。一个使用合适实验设计收集的全面的扩散 MRI 数据集,可供科学界使用,包括三个 DWI 壳(Bmax=5000 s/mm)、30 个梯度方向、一组对极梯度方向的重复、四个相位编码方向和三个不同的头部方向。所提出的方法学使用 TORTOISE 扩散 MRI 处理管道进行了测试。
原始扭曲数据的中值变异性在 DWIs 中比校正版本高 123%,在张量衍生指标中高 100-168%,在 MAPMRI 指标中高 28-111%。EPI 扭曲引起了相当大的变异性,几乎与涡流扭曲的贡献相当。
本文提出的数据集和评估策略可用于定量比较校正运动、涡流和其他 EPI 扭曲引起的扭曲的不同方法,并可用于基准测试新开发的算法。